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Abstract

We consider an appropriate residual definition for use in a bootstrap exercise to provide a computationally simple method
of obtaining reserve prediction errors for a generalised linear model which reproduces the reserve estimates of the chain
ladder technique (under certain restrictions which are specified in the paper). We show how the bootstrap prediction errors
can be computed easily in a spreadsheet, without the need for statistical software packages. The bootstrap prediction errors
are compared with their analytic equivalent from other stochastic reserving models, and also compared with other methods
commonly used, including Mack’s distribution free approach (Mack, 1993. ASTIN Bulletin 23 (2), 213–225) and methods
based on log-linear models. ©1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

In recent years, considerable attention has been given to the relationship between various stochastic models and
the chain ladder technique. Stochastic models have been constructed with the aim of producingexactlythe same
reserve estimates as the traditional deterministic chain ladder technique. At first sight, this might seem like a futile
exercise: why use a complex stochastic method to find reserve estimates when a simple deterministic method will
suffice? The answer is that as well as the reserve estimates, there are other aspects of the model which are of
importance, such as the underlying distributional assumptions of the model being fitted, estimates of the likely
variability in the parameter estimates, and an estimate of the goodness-of-fit of the model. It is also useful to know
where the data deviate from the fitted model, and to have a sound framework within which other models can be
fitted and compared.

To date, two models have been suggested, both of which provide reserve estimates which are identical to those
provided by the deterministic chain ladder technique (under suitable constraints explained in Section 2), and allow
estimates of reserve variability to be calculated. These are Mack’s distribution free approach (Mack, 1994), and
Renshaw and Verrall’s approach using generalised linear models (Renshaw and Verrall, 1994). Other models have
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been proposed which provide reserve estimates which are usually close to those from the chain ladder technique,
but not identical.

A key advantage of Renshaw and Verrall’s approach is that it is embedded within the generalised linear modelling
framework, widely used in statistical modelling. Theory associated with generalised linear models can be used to
suggest how parameter estimates can be obtained, and also to suggest appropriate goodness-of-fit measures and
residual definitions. The theory can also help in deriving analytic standard errors of prediction (prediction errors)
of reserve estimates.

Residuals can also be used in a bootstrap exercise to provide bootstrap standard errors. It is important when
bootstrapping to use a residual definition which is appropriate to the model under consideration. Renshaw and
Verrall’s model suggests a residual definition which is appropriate for bootstrapping reserve estimates. This residual
definition deviates from the definition used in previous papers on bootstrapping reserve estimates (Brickman et al.,
1993; Lowe, 1994), and overcomes some of the difficulties previously identified.

Analytic prediction errors involve complex formulae which are difficult to evaluate. On the other hand, bootstrap
prediction errors are remarkably easy to calculate, and can be computed using a spreadsheet, without recourse to
specialised statistical modelling packages.

In the following section, we provide a brief overview of other stochastic reserving models, in addition to those
mentioned above. Sections 3 and 4 introduce analytic prediction errors and bootstrap prediction errors. An example
in which results from the various models are compared is contained in Section 5. An outline of the calculations
required for the bootstrap prediction errors appears in Appendix A.

2. Stochastic reserving models

Kremer (1982) considered the logarithm of incremental claims amounts as the response and regressed on two
non-interactive covariates.

Let Cij denote the incremental claims amount arising from accident yeari paid in development yearj. Let
Yij = log(Cij ) and consider the log-normal class of modelsYij = mij + εij with

Yij ∼ IN(mij , σ
2), (2.1)

εij ∼ IN(0, σ 2), (2.2)

mij = ηij , (2.3)

ηij = c + αi + βj , α1 = β1 = 0. (2.4)

The normal responsesYij are assumed to decompose (additively) into a deterministic non-random component with
meanmij = ηij and a homoscedastic normally distributed random error component about a zero mean. The use
of the logarithmic transform immediately imposes a limitation on this class of models in that incremental claim
amounts must be positive.

Eqs. (2.1)–(2.4) define the model introduced by Kremer. Accident year and development year are treated as
factors, with a parameterαi for each accident yeari and a parameterβj for each development yearj. It should
be noted that this representation implies the same development pattern for all accident years, where that pattern is
defined by the parametersβj .

Parameters in the predictor structureηij are estimated by maximum likelihood, which in the case of the normal
error structure is equivalent to minimizing the residual sum of squares. The unknown varianceσ 2 is estimated by
the residual sum of squares divided by the degrees of freedom (the number of observations minus the number of
parameters estimated).

Given the parameter estimates, the predicted values on a log scale can be obtained by introducing those estimates
back into Eq. (2.4). Unfortunately, exponentiating to give predicted values on the untransformed scale introduces a
bias, which must be corrected. Specific details can be found in Renshaw (1989); Verrall (1991a). This model usually
produces predicted values which are close to those from the simple chain ladder technique.



P. England, R. Verrall / Insurance: Mathematics and Economics 25 (1999) 281–293 283

Standard results from statistical theory allow prediction errors to be calculated for reserve estimates, and also
allow diagnostic checks of the fitted model to be performed by analysing appropriate residuals.

It should be noted that the model can be extended by considering alternatives to the linear predictor specified in
Eq. (2.4). This log-normal model and further generalisations have been considered by Zehnwirth (1989), Zehnwirth
(1991), Renshaw (1989), Christofides (1990), Verrall (1991a,b), amongst others.

In 1994, two papers were published, both of which derived stochastic models giving the same reserve estimates
as the deterministic chain ladder technique. Mack (1994) presented a distribution free approach, whereas Renshaw
and Verrall (1994) presented a model with the distributional properties fully specified. In an earlier paper, Mack
(1993) derived reserve standard errors for his distribution free approach. The approach of Renshaw and Verrall
(1994) is considered in detail because of the relevance when introducing the bootstrap. In the example in Section
5, the results from Mack (1994) are compared with those obtained by Renshaw and Verrall (1994), and by using a
bootstrap approach.

Renshaw and Verrall (1994) proposed modelling the incremental claimsCij directly as the response, with the
same linear predictor as Kremer, but linking the mean to the linear predictor through the logarithmic link function,
while using an “over-dispersed” Poisson error distribution. Formally,

E[Cij ] = mij and V ar[Cij ] = φE[Cij ] = φmij , (2.5)

log(mij ) = ηij , (2.6)

ηij = c + αi + βj α1 = β1 = 0. (2.7)

Eqs (2.5)–(2.7) define a generalised linear model in which the response is modelled with a logarithmic link function
and the variance is proportional to the mean (hence “over-dispersed” Poisson). The parameterφ is an unknown
scale parameter estimated as part of the fitting procedure.

Since this model is a generalised linear model, standard statistical software can be used to obtain maximum (quasi)
likelihood parameter estimates, fitted and predicted values. Standard statistical theory also suggests goodness-of-fit
measures and appropriate residual definitions for diagnostic checks of the fitted model.

Renshaw and Verrall were not the first to notice the link between the chain ladder technique and the Poisson
distribution (see Appendix A of Mack (1991)), but were the first to implement the model using standard methodolgy
in statistical modelling, and to provide a link with the analysis of contingency tables.

It should be noted that the model proposed by Renshaw and Verrall is robust to a small number of negative
incremental claims, since the responses are the incremental claims themselves (rather than the logarithm of the
incremental claims as in log-normal models). However, because of the way in which the model structure is param-
eterised and the estimates obtained, it is necessary to impose the restriction that the sum of incremental claims in
every row and every column of the data triangle must be positive. Furthermore, because of the logarithmic link
function, fitted values are always positive. This usually makes the model unsuitable for use with incurred claims,
which often include overestimates of case reserves in the early stages of development leading to a series of negative
incremental incurred claims in the later stages of development.

Mack (1991) suggested a further model which is relevant to this paper. In this model, a multiplicative parametric
structure is proposed for the mean incremental claims amounts which are modelled as Gamma response variables, and
a rather complex fitting procedure for obtaining maximum likelihood parameter estimates is used. As Renshaw and
Verrall (1994) note, exactly the same model can be fitted using a generalised linear model in which the incremental
claim amounts are modelled as independent Gamma response variables, with a logarithmic link function and the
same linear predictor as Kremer (1982). Formally,

E
[
Cij

] = mij and V ar
[
Cij

] = φE
[
Cij

]2 = φm2
ij , (2.8)

log(mij ) = ηij , (2.9)

ηij = c + αi + βj , α1 = β1 = 0. (2.10)
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The only difference between this model and the model proposed by Renshaw and Verrall (1994) is that the variance
is now proportional to the mean squared. The model defined by Eqs. (2.8)–(2.10) can be fitted using standard
statistical software capable of fitting GLMs. Like the log-normal models, fitted values from this model are usually
close to those from the standard chain ladder technique, but not exactly the same.

3. Analytic estimates of reserve prediction errors

One of the principle advantages of stochastic reserving models is the availability of estimates of reserve variability.
Commonly used in prediction problems (as we have here) is the standard error of prediction, also known as the
prediction error, or root mean square error of prediction. Consider accident yeari and claim payments in development
yearj (yet to be observed). The mean square error of prediction is given by

E
[
(Cij − Ĉij )

2
] ∼= Var

[
Cij

] + Var
[
Ĉij

]
(3.1)

For a detailed justification of Eq. (3.1), see Renshaw (1994). Eq. (3.1) is valid for the log-normal reserving models,
the over-dispersed Poisson model, and the Gamma model. Note that the mean square error of prediction can be
considered as the sum of two components, variability in the data (process variance) and variability due to estimation
(estimation variance). The precise form of the two components of the variance is dictated by the specification of
the model fitted. For the log-normal model defined by Eqs. (2.1)–(2.4), the precise form of the two components of
variance can be found in Renshaw (1989) or Verrall (1991a).

A general form for the process variance can be derived for the over-dispersed Poisson and Gamma models. From
Eqs. (2.5) and (2.8), it can be seen that

Var
[
Cij

] = φm
ρ
ij , (3.2)

whereρ = 1 for the over-dispersed Poisson model andρ = 2 for the Gamma model.
For the estimation variance, we note that for the over-dispersed Poisson and Gamma models

Ĉij = mij = exp(ηij ).

Then using thedelta method,

Var[Ĉij ] ∼=
∣∣∣∣∂mij

∂ηij

∣∣∣∣
2

Var
[
ηij

]
,

giving

E[(Cij = Ĉij )
2] ∼= φm

ρ
ij + m2

ij Var[ηij ] (3.3)

The final component of Eq.(3.3), the variance of the linear predictor, is usually available directly from statistical
software packages, enabling the mean square error to be calculated without difficulty. The standard error of prediction
is the square root of the mean square error.

The standard error of prediction for origin year reserve estimates and the total reserve estimates can also be
calculated. Denoting the triangle of predicted claims contributing to the reserve estimates by∆, the reserve estimate
in origin yeari is given by summing the predicted values in rowi of ∆, that is

Ci+ =
∑
j∈∆i

Cij .
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From Renshaw (1994), the mean square error of prediction of the origin year reserve is given by

E
[
(Ci+ − Ĉi+)2

] ∼=
∑
j∈∆i

φm
ρ
ij +

∑
j∈∆i

m2
ij Var

[
ηij

] + 2
∑

j1,j2∈∆i
j2>j1

mij1mij2 Cov
[
ηij1ηij2

]
. (3.4)

The total reserve estimate is given by

C++ =
∑

i,j∈∆

Cij ,

and the mean square error of prediction of the total reserve is given by

E
[
(C++ − Ĉ++)2

] ∼=
∑

i,j∈∆

φm
ρ
ij +

∑
i,j∈∆

m2
ij Var

[
ηij

] + 2
∑

i1j1∈∆
i2j2∈∆
i1j1 6=i2j2

mi1j1mi2j2 Cov
[
ηi1j1ηi2j2

]
. (3.5)

Eqs. (3.4) and (3.5) require considerable care when summing the appropriate elements. The covariance terms are not
readily available from statistical software packages. However, provided thedesign matrixandvariance–covariance
matrix of the parameter estimates can be extracted from the statistical software package used, a full matrix of the
covariance terms can be calculated. Indeed, the variances of the linear predictors are simply the diagonal of such a
matrix.

Note that the first term in the accident year and overall prediction errors is simply the appropriate sum of the
process variances. The remaining terms relate to the estimation variance.

4. Bootstrap estimates of reserve prediction errors

Where a standard error is difficult or impossible to estimate analytically, it is common to adopt the bootstrap.
In claims reserving, we are interested in the prediction error of the sum of random variables, and the bootstrap
technique is a natural candidate for this. In regression type problems, it is common to bootstrap the residuals, rather
than bootstrap the data themselves (see Efron and Tibshirani, 1993). However, it is important to use an appropriate
residual definition for the problem at hand. For linear regression models with Normal errors, the residuals are simply
the observed values less the fitted values. For generalised linear models, an extended definition of residuals is required
which have (approximately) the usual properties of Normal theory residuals (see McCullagh and Nelder, 1989). The
most commonly used residuals in generalised linear models are the Deviance residuals and the Pearson residuals.
A third residual, less commonly used, is the Anscombe residual. The precise form of the residual definitions is
dictated by the error distribution. For the model defined by Eqs. (2.5)–(2.7), we use the form of residuals suitable
for Poisson GLMs, which are:

unscaled Deviance residual

rD = sign(C − m)
√

2(C log(C/m) − C + m, (4.1)

unscaled Pearson residual

rP = C − m√
m

, (4.2)

unscaled Anscombe residuals

rA =
3
2(C2/3 − m2/3)

m1/6
.
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The bootstrap process involves resampling, with replacement, from the residuals. A bootstrap data sample is then
created by inverting the formula for the residuals using the resampled residuals, together with the fitted values.
Given r andm, it can be seen that Eq. (4.1) cannot be solved analytically for the observed incremental claims,C,
making deviance residuals less suitable for bootstrapping. However, it is easy to solve Eq. (4.2) forC. Given a
resampled Pearson residualr∗

P together with the fitted valuem, the associated bootstrap incremental claims amount,
C∗, is given by

C∗ = r∗
P
√

m + m. (4.3)

It is also possible to solve the Anscombe residuals forC, but they are not considered here any further because
they are less commonly used and because it is desirable to use a residual definition when bootstrapping which is
consistent with the estimation of the scale parameter (see below).

Having obtained the bootstrap sample, the model is refitted and the statistic of interest calculated. The process is
repeated a large number of times, each time providing a new bootstrap sample and statistic of interest. The bootstrap
standard error is the standard deviation of the bootstrap statistics.

In the context of stochastic claims reserving, resampling the residuals (with replacement) gives rise to a new
triangle of claims payments. Strictly, we ought to fit the over-dispersed Poisson GLM to the bootstrap sample to
obtain the bootstrap reserve estimates. However, we can obtain identical reserve estimates using standard chain
ladder methodology. It is at this point that the usefulness of the bootstrap process becomes apparent: we do not
need sophisticated software to fit the model, a spreadsheet will suffice. To obtain the bootstrap standard errors of
the reserve estimates, it is necessary to repeat the process a large number of times (say,N), each time creating a
new bootstrap sample, and obtaining chain ladder reserve estimates. The bootstrap standard errors are the standard
deviations of theN bootstrap reserve estimates. Once set up, the process is very quick, taking only a few seconds
on a standard desktop computer.

The bootstrap standard error is an estimate of the square root of theestimationvariance. However, it cannot
be compared directly with the analytic equivalent since the bootstrap standard error does not take account of the
number of parameters used in fitting the model: the bootstrap process simply uses the residuals with no regard as
to how they are obtained. The analytic estimates of the estimation variance do allow for the number of parameters
estimated since they involve variance and covariance terms which implicitly involve the scale parameterφ in their
calculation. The scale parameter is estimated as either the model deviance divided by the degrees of freedom, or
the Pearson chi-squared statistic divided by the degrees of freedom, the choice usually making little difference. The
deviance and Pearson chi-squared statistics are obtained as the sum of the squares of the corresponding residuals.
The degrees of freedom are defined as the number of data points (in the original data sample) less the number of
parameters used in fitting the model. Therefore, the Deviance scale parameter is given by

φD =
∑

r2
D

n − p
,

and the Pearson scale parameter is given by

φP =
∑

r2
P

n − p
, (4.4)

wheren is the number of data points in the sample,p is the number of parameters estimated and the summation
is over the number (n) of residuals. It can be seen that an increased number of parameters used in fitting the model
introduces a penalty (ceteris paribus).

For consistency, we use the Pearson scale parameter in the analytic estimation variance, and the Pearson residuals
in the bootstrap process. The bootstrap estimation variance is analogous to the analytic estimation variance without
adjusting for the number of parameters (as though the scale parameter had been calculated by dividing byn not
n−p). To enable a proper comparison between the estimation variances given by the two procedures, it is necessary
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to make an adjustment to the bootstrap estimation variance to take account of the number of parameters used in
fitting the model. The appropriate adjustment is to multiply the bootstrap estimation variance byn/(n − p).

To obtain the bootstrap prediction error, it is necessary to add an estimate of the process variance, which is
simply the scale parameter multiplied by the reserve estimates (see Eqs. (3.4) and (3.5) whenρ = 1). The reserve
estimates are given by the initial projection from the chain ladder technique, and the scale parameter is calculated
by summing the squares of the residuals used in the bootstrap exercise. The process variance can also be computed
in a spreadsheet. The bootstrap prediction error is then given by

PEbs =
√

φPR + n

n − p
(SEbs(R))2,

whereR is an accident year or total reserve, and SEbs(R) is the bootstrap standard error of the reserve estimate.
It should be noted that no allowance has been made for a tail factor in the bootstrap calculations. It is not obvious

how uncertainty in predicted values beyond the range of data observed should be taken into account. A fixed tail
factor should not be included as this will increase the reserve estimates but leave the estimation variance unchanged,
thus reducing the prediction error as a percentage of the reserve estimate. Extrapolating can only increase the
uncertainty, not reduce it.

An example showing the computations required by the bootstrap can be found in Appendix A.

5. Example

To enable a comparison with previously published methods, we use the data from Taylor and Ashe (1983) which
was also used by Verrall (1991a,b); Mack (1993); Renshaw, (1989,1994). The data are shown here in incremental
form.

357 848 766 940 610 542 482 940 527 326 574 398 146 342 139 950 227 229 67 948
352 118 884 021 933 894 1 183 289 445 745 320 996 527 804 266 172 425 046
290 507 1 001 799 926 219 1 016 654 750 816 146 923 495 992 280 405
310 608 1 108 250 776 189 1 562 400 272 482 352 053 206 286
443 160 693 190 991 983 769 488 504 851 470 639
396 132 937 085 847 498 805 037 705 960
440 832 847 631 1 131 398 1 063 269
359 480 1 061 648 1 443 370
376 686 986 608
344 014

Reserve estimates provided by the deterministic chain ladder, the over-dispersed Poisson model, the Gamma
models using the GLM implementation outlined in this paper and the (Mack, 1991) implementation, and three
methods using log-normal models are shown in Table 1. Equivalent prediction errors are shown in Table 2, with the
inclusion of the bootstrap approach and Mack’s distribution free approach.

The results for Mack (1991), Verrall (1991a), Renshaw/Christofides and Zehnwirth have been taken from Mack
(1993). The three log-normal models (Verrall (1991a), Renshaw/Christofides and Zehnwirth) are all using essentially
the same model structure, as defined by Eqs. (2.1)–(2.4). The differences in the reserve estimates and the prediction
errors for the log-normal models are due to alternative methods for implementing the necessary bias correction or
in the calculation ofσ 2. The prediction error using Mack’s distribution free approach has been taken from Mack
(1993). Renshaw (1994) used the same data to compare results from the log-normal, Poisson and Gamma chain
ladder type models (using a deviance scale parameter), but did not compare his results with Mack’s distribution
free and Gamma models, and did not consider the bootstrap.
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Table 1
Estimated reserves (000’s)

Chain ladder Poisson GLM Gamma GLM Mack (1991) Verrall (1991a) Renshaw/Christofides Zehnwirth

i = 2 95 95 93 93 96 111 109
i = 3 470 470 447 447 439 482 473
i = 4 710 710 611 611 608 661 648
i = 5 985 985 992 992 1011 1091 1069
i = 6 1419 1419 1453 1453 1423 1531 1500
i = 7 2178 2178 2186 2186 2150 2311 2265
i = 8 3920 3920 3665 3665 3529 3807 3731
i = 9 4279 4279 4122 4122 4056 4452 4364
i = 10 4626 4626 4516 4516 4340 5066 4965

Total 18 681 18 681 18 085 18 085 17 652 19 512 19 124

Table 2
Prediction errors as % of reserve estimate

Mack’s Poisson Bootstrap Gamma Mack Verrall Renshaw/ Zehnwirth
distribution GLM analytic chain ladder GLM (1991) (1991a) Christofides
free

i = 2 80 116 117 48 40 (49) 49 54 49
i = 3 26 46 46 36 30 (37) 37 39 35
i = 4 19 37 36 29 24 (30) 30 32 29
i = 5 27 31 31 26 21 (26) 27 28 25
i = 6 29 26 26 24 20 (25) 25 26 24
i = 7 26 23 23 24 20 (25) 25 26 24
i = 8 22 20 20 26 21 (26) 27 28 26
i = 9 23 24 24 29 24 (30) 30 31 30
i = 10 29 43 43 37 31 (38) 38 40 39

Total 13 16 16 15 – 15 16 16

It can be seen that Renshaw and Verrall’s overdispersed Poisson GLM gives exactly the same reserve estimates
as the deterministic chain ladder technique (and hence Mack’s distribution free stochastic model). The Gamma
model implemented as a generalised linear model gives exactly the same reserve estimates as the Gamma model
implemented by Mack (1991), which is comforting rather than surprising. It can be seen that the reserve estimates
of the Gamma models are close to the chain ladder estimates. The log-linear model implemented by (Verrall, 1991a)
gives reserve estimates which are close to those given by the Gamma models, and again they are close to those given
by the chain ladder technique on the whole. The reserve estimates given by Renshaw/Christofides and Zehnwirth
are very close to each other, the difference being due to the calculation ofσ 2.

The prediction errors as a percentage of the equivalent reserve estimates of the three log-normal models are
very close to each other in total and across accident years. For the Gamma models, at first sight it appears that the
prediction errors are quite different. However, Mack (1991) did not make an adjustment for the degrees of freedom
used in fitting his model, the appropriate adjustment being division byn − p instead ofn when calculating the
scale parameterφ, wheren is the number of data points (55) andp is the number of parameters estimated (19). The
adjustment affects both the estimation variance and process variance. To enable a proper comparison, it is necessary
to adjust Mack’s prediction errors by a factorf, where

f =
√

n

n − p
=

√
55

36
= 1.236.

The numbers in parentheses show Mack’s prediction errors including this adjustment. It can be seen that these are
now very close to those given by the Gamma GLM, the differences being due to rounding errors. Mack did not
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provide a prediction error for the overall reserve. It is perhaps surprising that the prediction errors given by the
Gamma models are very close to those given by the log-normal models, particularly the models of Verrall (1991a)
and Zehnwirth. It should be noted, however, that for both the log-normal and gamma distributions, the variance is
proportional to the mean squared.

Although the prediction error for the total reserve given by the Poisson GLM is almost identical to that given by the
Gamma and log-normal models, there are some large differences when looking across accident years. The biggest
difference is clearly wheni = 2, where the Poisson model gives a large prediction error of 116%. It should be noted,
however, that the denominator (the reserve estimate) is very low, and a large prediction error is not unexpected.

The bootstrap prediction errors (based on 1000 simulations) are extremely close to the analytic prediction errors of
the Poisson model, both in total and across accident years. This is remarkable given the radically different methods
used in obtaining the estimation variance.

Like the Poisson GLM and bootstrap approaches, Mack’s distribution free approach gives a high prediction error
wheni = 2. Prediction errors using Mack’s distribution free approach for the other accident years are systematically
neither higher nor lower than those given by the other methods. The prediction error for the total reserve, at 13%, is
slightly lower than the equivalent figures from the other methods. Again, there is no adjustment for the number of
parameters used in fitting the model. It is interesting to note that using the same adjustment factor,f, as for Mack’s
Gamma model gives 16% for the prediction error of the total reserve, bringing it into line with the other models.
Unlike the Gamma model, however, it is not clear that such an adjustment is justified.

6. Conclusions

With the exception of Mack’s distribution free approach, all of the stochastic claims reserving models shown in
this paper use exactly the same linear predictor structure, that is, the structure introduced by Kremer. The models
differ in the error distribution assumed, the choice being between the log-normal, the (over-dispersed) Poisson
and the Gamma distributions. The Poisson model is interesting since the reserve estimates given by the model are
identical to those given by the standard deterministic chain ladder technique (under suitable constraints). Mack’s
distribution free approach is included because it also provides reserve estimates which are identical to those given
by the deterministic chain ladder technique.

Perhaps more interesting than the reserve estimates themselves are the prediction errors given by the various
models. For models in which the distributional assumptions have been specified, it is possible to use an analytic
or bootstrap approach. The bootstrap approach has been outlined for the Poisson model only, since it is easy to
implement in a spreadsheet environment. Since residuals can be defined for the log-normal and Gamma models, it
is also possible to obtain bootstrap prediction errors for these models, but model fitting is more complex.

It has been shown that when comparing prediction errors given by different methods, it is important to ensure
that both the estimation variance and process variance have been included, and that they have been calculated in a
consistent manner, including adjustment for the number of parameters used in fitting the model.

A comparison of the prediction errors reveals that the Gamma and log-normal models provide very similar
results when viewing the prediction errors as a percentage of reserve estimates. The bootstrap prediction errors are
remarkably similar to their analytic equivalent, justifying their use with the standard chain ladder technique when
applied correctly. The bootstrap procedure is practically expedient and does not require the summation of a large
collection of terms, unlike the analytic and distribution free approaches.

It is interesting to note that the prediction errors of the reserve totals given by the various methods are reassuringly
close in the example in Section 5. Although this is often the case, unfortunately it is not always, and care must be
taken in making inferences from the results. Further work is needed to justify the use of a particular error distribution
in stochastic claims reserving models. In particular, the accuracy and interpretation of accident year prediction errors
needs careful consideration. Clearly, it is not appropriate to consider approximate 95% prediction intervals as the
reserve estimate± twice the prediction error when the prediction error is a large percentage of the reserve estimate.
It is best to use the accident year prediction errors as a crude means of assessing confidence in the reserve estimates.



290 P. England, R. Verrall / Insurance: Mathematics and Economics 25 (1999) 281–293

Although we have used the Pearson residuals in our treatment of the bootstrap, Moulton and Zeger (1991)
discuss an adjusted Pearson residual which may perform better. The adjustment is difficult to accommodate in a
spreadsheet environment, and consequently has been ignored since any outperformance is outweighed by difficulty
of implementation.
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Appendix A. Calculations required by the bootstrap

Triangle 1 below shows the cumulative paid claims from the example, together with the traditional chain ladder
development factors.

Triangle 1 (observed cumulative data)

357 848 1 124 788 1 735 330 2 218 270 2 745 596 3 319 994 3 466 336 3 606 286 3 833 515 3 901 463
352 118 1 236 139 2 170 033 3 353 322 3 799 067 4 120 063 4 647 867 4 914 039 5 339 085
290 507 1 292 306 2 218 525 3 235 179 3 985 995 4 132 918 4 628 910 4 909 315
310 608 1 418 858 2 195 047 3 757 447 4 029 929 4 381 982 4 588 268
443 160 1 136 350 2 128 333 2 897 821 3 402 672 3 873 311
396 132 1 333 217 2 180 715 2 985 752 3 691 712
440 832 1 288 463 2 419 861 3 483 130
359 480 1 421 128 2 864 498
376 686 1 363 294
344 014
Development factors
3.4906 1.7473 1.4574 1.1739 1.1038 1.0863 1.0539 1.0766 1.0177 1.0000

The first stage is to obtain the cumulative fitted values, given the development factors. The fitted cumulative paid to
date equals the actual cumulative paid to date, so we can transfer the final diagonal of the actual cumulative triangle
to the fitted cumulative triangle. The remaining cumulative fitted values are obtained backwards by recursively
dividing the fitted cumulative value at timet by the development factor at timet − 1. The results of this operation
are shown in Triangle 2.

Triangle 2 (cumulative fitted values)

270 061 942 678 1 647 172 2 400 610 2 817 960 3 110 531 3 378 874 3 560 909 3 833 515 3 901 463
376 125 1 312 904 2 294 081 3 343 423 3 924 682 4 332 157 4 705 889 4 959 416 5 339 085
372 325 1 299 641 2 270 905 3 309 647 3 885 035 4 288 393 4 658 349 4 909 315
366 724 1 280 089 2 236 741 3 259 856 3 826 587 4 223 877 4 588 268
336 287 1 173 846 2 051 100 2 989 300 3 508 995 3 873 311
353 798 1 234 970 2 157 903 3 144 956 3 691 712
391 842 1 367 765 2 389 941 3 483 130
469 648 1 639 355 2 864 498
390 561 1 363 294
344 014

The incremental fitted values, obtained by differencing in the usual way, are shown in Triangle 3.



P. England, R. Verrall / Insurance: Mathematics and Economics 25 (1999) 281–293 291

Triangle 3 (incremental fitted values)

270 061 672 617 704 494 753 438 417 350 292 571 268 344 182 035 272 606 67 948
376 125 936 779 981 176 1 049 342 581 260 407 474 373 732 253 527 379 669
372 325 927 316 971 264 1 038 741 575 388 403 358 369 957 250 966
366 724 913 365 956 652 1 023 114 566 731 397 290 364 391
336 287 837 559 877 254 938 200 519 695 364 316
353 798 881 172 922 933 987 053 546 756
391 842 975 923 1 022 175 1 093 189
469 648 1 169 707 1 225 143
390 561 972 733
344 014

The unscaled Pearson residuals, shown in Triangle 4, can be obtained using Eq. (4.2), together with the observed
and fitted incremental data.

Triangle 4 (unscaled Pearson residuals)

168.93 115.01 −111.94 −311.63 170.23 521.04 −235.52 −98.64 −86.91 0.00
−39.14 −54.51 −47.73 130.76 −177.75 −135.47 252.02 25.11 73.64

−134.09 77.35 −45.71 −21.67 231.27 −403.77 207.21 58.77
−92.67 203.92 −184.51 533.16 −390.87 −71.77 −261.92
184.29 −157.75 122.49 −174.18 −20.59 176.15
71.17 59.56 −78.52 −183.21 215.31
78.26 −129.87 108.03 −28.62

−160.76 −99.91 197.16
−22.20 14.07

0.00

A crucial step in performing the bootstrap is resampling the residuals, with replacement. One such sample is
shown in Triangle 5. Notice that residuals may appear more than once when resampled with replacement (e.g. 59.56
appears four times). Care must be taken to ensure that all residuals have an equal chance of being selected.

Triangle 5 (example set of resampled residuals)

−157.75 207.21 −261.92 115.01 −22.20 14.07 25.11 168.93 −78.52 59.56
−135.47 −135.47 115.01 184.29 −45.71 176.15 −92.67 115.01 −235.52

215.31 −71.77 0.00 521.04 78.26 −21.67 59.56 −160.76
−390.87 −183.21 −86.91 −157.75 −235.52 59.56 184.29

115.01 77.35 −21.67 −45.71 533.16 0.00
14.07 533.16 −157.75 203.92 −235.52

−111.94 −183.21 521.04 −98.64
−403.77 252.02 −86.91

203.92 −28.62
59.56

Using the resampled residuals in Triangle 5, together with the original incremental fitted values in Triangle 3,
a bootstrap data sample can be calculated by using Eq. (4.3). The bootstrap sample associated with the resampled
residuals in Triangle 5 is shown in Triangle 6. The associated cumulative sample is shown in Triangle 7, together
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with development factors obtained by applying the standard chain ladder to the bootstrap data. The bootstrap reserve
estimate is obtained from the development factors and cumulative bootstrap sample in the usual way.

Triangle 6 (incremental bootstrap data sample)

188 083 842 558 484 657 853 267 403 007 300 180 281 353 254 108 231 609 83 474
293 040 805 657 1 095 099 1 238 128 546 413 519 919 317 083 311 436 234 551
503 702 858 204 971 264 1 569 774 634 753 389 594 406 186 170 432
130 025 738 275 871 647 863 552 389 432 434 833 475 640
402 982 908 346 856 956 893 928 904 049 364 316
362 166 1 381 652 771 385 1 189 647 372 609
321 773 794 937 1 548 957 990 057
192 942 1 442 279 1 128 946
517 999 944 509
378 950

Triangle 7 (cumulative bootstrap data sample together with development factors)

188 083 1 030 642 1 515 299 2 368 566 2 771 573 3 071 753 3 353 106 3 607 214 3 838 823 3 922 297
293 040 1 098 697 2 193 796 3 431 924 3 978 337 4 498 255 4 815 338 5 126 774 5 361 324
503 702 1 361 906 2 333 170 3 902 945 4 537 698 4 927 293 5 333 479 5 503 911
130 025 868 300 1 739 947 2 603 500 2 992 931 3 427 765 3 903 405
402 982 1 311 328 2 168 284 3 062 211 3 966 260 4 330 576
362 166 1 743 818 2 515 203 3 704 849 4 077 458
321 773 1 116 710 2 665 667 3 655 724
192 942 1 635 221 2 764 167
517 999 1 462 508
378 950
Resampled development factors
3.992 1.760 1.502 1.170 1.110 1.092 1.054 1.053 1.021

Bootstrap reserve estimates

i = 2 116 580
i = 3 419 829
i = 4 526 745
i = 5 1 041 244
i = 6 1 537 217
i = 7 2 236 020
i = 8 3 927 752
i = 9 4 769 853
i = 10 6 068 470

Total 20 643 712

The process is completed by repeatedly resampling from the residualsN times, whereN is large (e.g.N = 1000),
each time creating a new bootstrap sample and new bootstrap reserve estimates. The bootstrap standard errors of
the reserve estimates are simply the standard deviations of theN bootstrap reserve estimates.
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Table 3

Actual Bootstrap Variability Prediction Prediction

reserve SD Parameter Data error error (%)

i = 2 94 634 68 556 84 737 70 554 110 265 117
i = 3 469 511 122 608 151 548 157 153 218 320 46
i = 4 709 638 139 107 171 941 193 204 258 634 36
i = 5 984 889 165 159 204 142 227 610 305 745 31
i = 6 1 419 459 206 556 255 310 273 250 373 964 26
i = 7 2 177 641 291 556 360 373 338 448 494 384 23
i = 8 3 920 301 517 972 640 230 454 107 784 925 20
i = 9 4 278 972 734 598 907 987 474 426 1 024 461 24
i = 10 4 625 811 1 577 154 1 949 415 493 279 2 010 856 43

T otal 18 680 856 2 298 953 2 841 582 991 281 3 009 523 16

It is important to note that the bootstrap standard error so derived is an estimate of the square root of the estimation
variance, with no adjustment for the degrees of freedom. To enable a comparison with the analytic estimation variance
it is necessary to make the appropriate adjustment. Furthermore, to obtain the prediction error, it is necessary to
add the process variance, which in this case is the scale parameter multiplied by the original reserve estimate from
the chain ladder technique. The scale parameter is calculated as the Pearson chi-squared statistic divided by the
degrees of freedom, where the Pearson chi-squared statistic is the sum of the (unscaled) Pearson residuals squared
(see Eq. (4.4)).

The various components contributing to the prediction error are shown in Table 3 . The bootstrap standard deviation
is the standard deviation of 1000 bootstrap reserve estimates. Parameter variability is the bootstrap standard deviation
multiplied by

√
55/36, the degrees of freedom adjustment. Data variability is the square root of the product of the

scale parameter and the reserve estimates, where the scale parameter is 52 601. The bootstrap prediction error is the
square root of the sum of the squares of parameter variability and data variability.
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