log means: the common logarithm, so with base 10.
ln is the natural logarithm, so with base \(e \approx 2.718 \) and \(\pi \approx 3.14 \).

1. Solve the next equations:
 a) \(-2\log_5 x + 5\log_{25} x = 2\)
 b) \(\sqrt{x-1} - x = -7\)

2. Solve the next inequalities:
 a) \(\frac{-x + 9}{x - 1} \geq x\)
 b) \(\log(3 - 2x) < 1\)

3. Let \(f(x) = \frac{\cos x}{2 + \sin x} \) with domain the closed interval: \(0 \leq x \leq 2\pi\).
 a) Find the equation of the tangent line at the graph of the function where \(x = \pi \)
 b) Find the stationary points of \(f \), so solve: \(f'(x) = 0 \).
 c) Make a sign chart (sign diagram) for \(f' \) on the domain and find all extreme values of \(f \).
 Say: local/global and maximum/minimum.
 d) Find the range of the function \(f \).

4. Let \(f(x) = \frac{2x^2 - 3x}{e^x} \).
 a) Find the equation of the tangent (line) at the graph of \(f \) in the point where \(x = 1 \).
 b) Find and classify the extreme values.
 c) Find the interval(s) on which the graph of the function is convex.

5. a) Find \(\int_{-2}^{1} \frac{x^2}{\sqrt{2-x}} \, dx \)
 b) Find \(\int_{0}^{2} \frac{1}{1 + e^x} \, dx \)

6. a) Solve the system of equations:
 \[x^2 + y^2 = 25 \]
 \[3x - 4y = 0 \]
 b) Find the area of the surface in the \((x,y)\)-plane that satisfies both inequalities:
 \[(x^2 + y^2 \leq 25) \land (3x - 4y \leq 0) \]

7. Find \(\int_{-1}^{-0.5} \frac{e^{1/t}}{t^2} \, dt \)

Points: 10, 10, 20, 20, 20, 10, 10.