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Abstract

Which strategies do agents use when forming expectations about future prices, and how often do combinations

of these strategies lead to stable or unstable outcomes? To answer these questions we performed a four-round

strategy experiment in a cobweb economy. Each market consisted of 20 periods and in each period strategies

had to forecast next period’s price. It was common knowledge that the realized market price was a function of

all individual expectations, but subjects did not know the underlying market equilibrium equations. Subjects

gained experience in a ‘normal’ experiment before submitting their first strategy. All strategies were

programmed and after each round the subjects received feedback about the relative performance of their

strategy, and were allowed to revise their strategy for the next round.

Subjects use a wide variety of different strategies. Over the rounds quadratic forecasting errors

decrease and realized market prices move to a neighborhood of the rational expectations (RE) steady state, but

at the same time the complexity of the price fluctuations increases. Convergence to the unique RE steady state

occurs in less than 10% of all cases. In the final round 60% of the price fluctuations appears to be chaotic.

Strategy simulations with homogeneous agents typically show regular behaviour, with prices converging to a

steady state or to a 'far from the steady state' stable cycle. Heterogeneous interaction of simple prediction

strategies thus seems to be the main source of the endogenous price fluctuations, frequently leading to a

boundedly rational equilibrium of 'close to the steady state chaos'.

*Financial support by the Netherlands' Organization for Scientific Research (NWO) is gratefully
acknowledged. We thank Abdolkarim Sadrieh and Claudia Keser for their suggestions in designing the strategy
experiment. An earlier version of this paper was presented in a seminar at the Universität Bonn and we thank
Reinhard Selten and his coworkers for their comments. We also thank participants of the 1999 Annual Meeting
of the Economic Science Association in Lake Tahoe for their comments.
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1. Introduction

Expectations play a key role in modeling dynamic phenomena in economics and finance. Since

the pioneering papers by Muth (1961) and Lucas (1971), the Rational Expectations Hypothesis

(REH) has become the currently still dominating paradigm in expectation formation. According

to the REH, agents’ subjective expectations equal the objective mathematical expectations

conditional upon available information. In economic modeling the REH usually assumes perfect

knowledge of the underlying market equilibrium equations and agents are assumed to use these

equations to compute their rational expectations (RE) forecast.

The bounded rationality literature has recently put forward two important criticisms

concerning the REH. The first is that it is unrealistic to assume that agents have perfect

knowledge of underlying market equilibrium equations. It would be more reasonable to assume

that agents derive their expectations from time series observations; see e.g. Sargent

(1993,1998) for an overview of and many references to recent work on bounded rationality.

The second criticism is that in a heterogeneous world realized market prices depend upon

beliefs of all market participants. Even if agents would have perfect knowledge about market

equilibrium equations, rational expectations can only be achieved under the unrealistic

assumption that the agents also have perfect knowledge about the beliefs of all other agents in

the market. As an alternative to a world where all agents are perfectly rational several authors

have proposed an evolutionary competition between boundedly rational agents using simple

strategies; see for example the computational work by Arthur et al. (1997) on the Santa Fe

artificial stock market, theoretical work on evolutionary dynamics in the cobweb and the asset

pricing models by Brock and Hommes (1997,1998) and recent work in evolutionary game

theory as surveyed e.g. by Fudenberg and Levine (1998).

It is hard to observe or obtain detailed information about individual expectations in real

markets. One approach is by survey data analysis, as done for example by Frankel and Froot

(1987) on exchange rate expectations and Shiller (1989,1999) on stock market data. Economic

experiments are well suited for a detailed investigation of expectation formation in a controlled

dynamic environment. Unfortunately, as for example pointed out in Sunder (1995), only little

experimental work on expectation formation has been done. Some exceptions are the well

known 'bubble experiments' of Smith, Suchanek and Williams (1988), the overlapping

generations experiments by Marimon, Spear and Sunder (1993) and the inflationary economy

experiments in Marimon and Sunder (1993). Recently, Hommes, Sonnemans and van de Velden

(1999) and Hommes, Sonnemans, Tuinstra and van de Velden (1999) investigated expectations

formation in an experimental cobweb economy. In most of their experiments, prices do not
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converge to the unique rational expectations (RE) steady state, but keep fluctuating irregularly

in a neighbourhood of the steady state, suggesting expectations driven excess price volatility. In

the present paper we are particularly concerned with individuals who form expectations

repeatedly and have ample opportunity to learn and change prediction strategies. One of the

main questions of this study is whether these learning opportunities enforce convergence to the

unique RE steady state.

Most economic experiments take less than 2 hours and subjects only make a couple of

dozens decisions. In such experiments not only learning possibilities are limited (especially in

complicated situations), but it is also hard to detect exactly which expectation formation rules

subjects use (because of the relatively few decisions made by the subjects). A strategy

experiment in the spirit of Selten, Mitzkewitz and Uhlich (1997) seems to be well suited for our

purposes. The strategy method is becoming a popular tool in experimental economics, see e.g.

Brandts and Schram (1996), Keser (1992), Offerman et al. (1999), Sonnemans (1998); see also

the classic work of Axelrod (1984).

In our cobweb strategy experiment, subjects are asked to formulate a complete strategy,

that is, a description of all their forecasts in all possible states of the world (e.g. history of

prices). In each period all strategies that participate in the market forecast the next price. The

realized market equilibrium price is then determined by a fixed, but unknown, (linear) demand

curve, and (nonlinear) supply, depending upon individual expected market prices, aggregated

over all producers. The realized market price thus depends on all individual strategies.

Subjects gain experience in forecasting next period’s price in an introductory experiment

before submitting their first strategy. These strategies are then programmed and simulated. After

each round, subjects receive feedback about the relative performance of their strategy and the

outcomes of five randomly selected simulations in which their strategy is included. Subjects

had one week to revise their strategy for the next round. In each of the four rounds of the

strategy experiment (as well as in the introductory experiment) financial incentives, based upon

prediction performance, were used to motivate the subjects.

Since its introduction in the thirties (see e.g. Ezekiel (1938)), the cobweb or 'hog cycle'

model has become one of the classical examples in economic dynamics. Nerlove (1958)

introduced adaptive expectations into the cobweb model, whereas Muth (1961) used the

cobweb model to introduce rational expectations. A convenient feature of the cobweb model is

that it has a unique RE equilibrium: the steady state price where demand and supply intersect.

More recently, in the bounded rationality learning literature the cobweb model has been used as

a benchmark example, to show that adaptive learning by ordinary least squares (Bray and Savin
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(1986)), by genetic algorithms (Arifovic (1994)) or by sample average and sample

autocorrelations (Hommes and Sorger (1998)) enforces convergence of prices to the unique RE

equilibrium, even when demand and supply are unknown and agents only observe past prices.

In general however, adaptive learning may also be destabilizing as e.g. emphasized by Laroque

and Grandmont (1991) and Grandmont (1998). In particular, in a cobweb model with

nonlinear, but monotonic demand and supply curves, adaptive expectations (which is in fact

just an adaptive learning scheme with a constant gain factor) can lead to higher order stable

periodic cycles or even chaotic price fluctuations (Chiarella (1988) and Hommes (1994)).

Furthermore, Brock and Hommes (1997) use the cobweb model to show that evolutionary

competition between heterogeneous forecasting rules can destabilize the RE steady state and

can lead to periodic or chaotic price fluctuations.

The main research questions of the present study are: (1) What kind of strategies do

subjects use? (2) Will prices in markets with heterogeneous agents converge to the unique RE

steady state or will market instability and price fluctuations prevail in a heterogeneous world?

(3) How does learning affect the strategies and the price dynamics in the consecutive rounds?

(4) Can market stability or instability be attributed to characteristics of individual strategies, or

is heterogeneity the fundamental cause?

We find that subjects use a wide variety of strategies and that convergence to the RE

steady state is relatively rare (less than 10%). Over rounds the amplitude of price fluctuations

decreases, but at the same time the price dynamics becomes more irregular. In the final round

about 60% of the price sequences are chaotic. Instability seems to be caused by  heterogeneity.

The paper is organized as follows. Section 2 describes the design of the strategy

experiment and Section 3 discusses the main results. Finally, Section 4 concludes.
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2. Design

Subjects

Since the experiment lasted more than six weeks many subjects might be lost during the course

of the experiment if we would recruit in the normal way (by advertisements and bulletin

boards). Therefore we recruited subjects in a course "Dynamical Systems", a mathematical

introduction to dynamical systems in the undergraduate econometrics program. Students had no

prior knowledge about dynamic economic systems. The cobweb model was only treated

(briefly) as an economic example in the last week of the course, after the experiment had

finished. Subjects could hand in their strategies after class.

In the introductory experiment 29 subjects participated, earning on average 51 Dutch

guilders (23 Euro) in approximately 2 hours. All 29 students handed in a first strategy. One of

the students left the course after the first week, so that 28 students handed in their second

strategy. The third and fourth (final) strategies were handed in by respectively 21 and 24

subjects.1

The cobweb economy

The unknown cobweb model underlying the experiment has a nonlinear, but monotonically

increasing supply curve, such that under simple forecasting rules the model can generate stable

price cycles. In particular, we have chosen the nonlinear supply curve such that, if all

producers would have naive price expectations, i.e. would expect tomorrow’s price to equal

today’s price, the cobweb economy is unstable and prices converge to a stable 2-cycle (the

well known ‘hog-cycle’ with constant up and down price oscillations). Parameters have been

fixed such that under adaptive expectations a stable 4-cycle is the most complicated dynamical

behaviour.2

A market consists of six subjects (or strategies). There is no actual trade going on, but the

realized market price depends upon the (unknown) demand and supply curves and individual

                                                            
1 Originally we also planned an experiment after subjects submitted their final strategies, but before they would
receive the final results. In that experiment subjects would play against the final strategies of the other
subjects. The main goal of this planned experiment would be to study the relationship between actual behavior
of subjects and the strategy they submitted (e.g. Sonnemans (2000)). We announced this experiment the day
the students submitted their final strategies and we asked the subjects not to talk about their strategies yet.
Unfortunately some students were not informed about this experiment and we had to cancel the experiment
when we found out that many students already heard about the successful strategies of the first three rounds.
2 In general, as the weight factor of the adaptive expectations scheme changes, for a nonlinear, S-shaped supply
curve bifurcation routes to chaos may arise (see Hommes (1994)). However, for our choice of the parameters
in the experiment only the first two bifurcations from a stable steady state to a stable 2-cycle and to a stable 4-
cycle  arise, and fully developed chaos does not arise. An important motivation for this setup was whether in a
heterogeneous world the strategies would be able to detect the regularities along the stable cycles and stabilize
the system and enforce prices to converge to the REE steady state.
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expectations. The price forecasts Pi of subject i determines the supply of that subject as

follows:
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where C is a parameter determining the inflection point of the nonlinear S-shaped supply curve.

It is important to note that the S-shaped supply curve is consistent with producers’ expected

profit maximization, since it can be derived from an increasing and convex cost function.3 The

demand curve is linear and given by:
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Figure 1 shows the demand and supply curves. In order to generate different levels of steady

state equilibrium prices the parameter C is chosen randomly in each market, with C drawn from

a uniform distribution over the interval [50,80]. This means that participants have to learn a

different steady state equilibrium price for each market they enter. Notice however that, as C

changes both the demand and supply curves are shifted horizontally. Hence, for simple

forecasting rules the dynamics around the steady state remains qualitatively the same in all

markets and only the price level differs.

Incentive structure

A good measure of the quality of a forecast is its quadratic forecasting error. In the introductory

experiment subjects gained experience with this measure. In each market of 20 periods,

subjects started with 25 Dutch guilders (approximately 11.35 Euro), and after each period an

amount of 0.1 times the squared forecasting error (in cents) was subtracted from this amount.

The payoff of a subject in a market of 20 periods was the amount left after period 20 if it was

positive and 0 otherwise. Three markets were played with different (randomly drawn)

parameter values C. Total earnings of a subject were the sum of the earnings in the three

markets.

                                                            
3 See e.g. Hommes (1999), where a similar S-shaped supply curve is derived from an increasing, convex
polynomial cost function of degree 4 or higher.
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Figure 1. The supply and demand curves of the cobweb model. The parameter C varies between 50
and 80, so that the corresponding RE steady state varies between 48.39 and 78.39.

We recognized that a similar incentive structure in the strategy experiment might stimulate the

subjects to cooperate and share their strategies and feedback results to optimize total earnings.

For example, all subjects would benefit from a fast convergence to the equilibrium steady state.

Therefore in the strategy experiment we employed a tournament incentive structure: payment

was based upon relative performance of the strategies. The performance was based upon the

average squared prediction error of the strategy over all simulations in that round. The strategy

with the smallest average quadratic forecasting error received 50 guilders (approximately

22.70 Euro) in rounds 1, 2 and 3 and in the final round three prizes of 250, 150 and 50 guilders

(113.60, 68.20 and 22.70 Euro respectively) were awarded. In addition to this students

received a flat fee of 5 guilders (2.25 Euro) if they submitted a strategy.

A possible disadvantage of payments based upon relative performance is that subjects

may try to destabilize markets in order to make it harder for the other market participants to

forecast prices. However, it is easy to see that this cannot work. If all strategies predict the

equilibrium price except for one strategy that tries to destabilize the market by predicting a

higher (lower) price, the realized price will be lower (higher) than the equilibrium price. The

destabilizing strategy will thus end up with a larger quadratic error than the other strategies in

that market. Even more importantly, one can only affect realized prices in the market in which
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the strategy participates; an increasingly unstable market will cause a comparative advantage of

the strategies active in the other markets. No subject ever mentioned (in the questionnaires or in

class after the experiment ended) that he or she had tried to destabilize markets.

Procedures

Introductory experiment. The goal of the introductory experiment was to give the subjects some

experience in their forecasting task. The experiment was completely computerized and took

place in the CREED experimental laboratory. Understanding of the instructions was checked by

control questions. The forecasting task was presented as follows:

“In this experiment you are the adviser to a producer. The precise product that is being produced
by this producer is not relevant in this experiment. At the start of each period you make a
prediction of the price of the product in that period. The producer you are coupled with decides
how much to produce, based upon your prediction of the price.

Several producers are active in one market. Every producer is coupled with exactly one
adviser (participant in this experiment) and every adviser with exactly one producer. The realized
price is determined by the total production of all producers in a market and the total consumer
demand (the realized price is such that total supply equals total demand).

In this experiment all subjects have the role of adviser; a computer program plays the
role of both producers and consumers.

After all predictions are collected, the computer calculates the realized market price.

There is only a limited amount of information you can use. You do NOT know:
• The number of producers which are active in the market of your producer;
• The predictions of the other participants;
• How producers determine their production based upon your prediction;
• How the price is determined by total demand and supply.
You DO know the realized prices of the previous periods as well as how good your prediction has
been in these periods.

The consumer demand and the way the production is determined by your prediction may differ
between markets. Therefore realized prices may also differ considerably between markets. You
can interpret this as follows: in every market of 20 periods you are coupled with a different
producer (who may have a different technology) who is active on another market than the
previous producer you were coupled with.”

Subjects played 3 consecutive markets of 20 periods with different parameters C. After the

third market they received instructions for the strategy part of the experiment (see appendix 1).

Strategies. The subjects formulated their first strategy in the laboratory, immediately after the

introductory experiment. The experimenters checked these strategies for clarity, completeness

(the strategy provides a prediction in all possible situations), uniqueness (the strategy always

provides exactly one prediction) and informational correctness (the strategy does not use

information that is not available, such as future prices or previous predictions of other

strategies). An example of a strategy form is included in appendix 2.

Questionnaires. Subjects filled in a small questionnaire every round. They were asked about

(among other things) their considerations when changing their strategy, the effect of the
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feedback upon their new strategy, whether they had talked with other subjects about the

experiment and how well they thought their new strategy would be.

Feedback was provided one week after the strategies were submitted. The feedback consisted

of a general ranking of the strategies by mean quadratic forecasting error (1 page) and two

personal pages containing for each subject 5 randomly chosen simulations in which his or her

strategy participated. An example of the feedback information is included in Appendix 3.

Handing in strategies. After students received feedback about their latest strategy, they had one

week time to hand in a new strategy. Students could hand in their strategies during class (twice

a week) or give them directly to one of the organizers. All strategies were checked

immediately.

3. Results

This section starts with a description of some characteristics of the submitted strategies.

Thereafter the short, medium and long run dynamics will be discussed. We find complicated

price fluctuations and evidence of chaotic behavior. In the final part of this section an attempt is

made to find the cause of this unstable behavior: is this instability caused by individual

strategies or is it due to interactions between strategies?

3.1 Characteristics of the strategies

In most empirical studies in market dynamics researchers have only access to the sequence of

realized prices and the underlying exact expectations rules used by the market participants

cannot be observed. One of the nice features of the present study is the availability of the

explicit strategies. Therefore we will first turn to the question: “what kind of strategies do

subjects use?”

As can bee seen in table 1 a total of 102 strategies were submitted. The strategies are all

different, although some subjects made only minor changes between rounds. It is impossible to

describe all strategies in detail, and therefore we will focus on some general characteristics.
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Round 1 Round 2 Round 3 Round 4 Total

Number of strategies 29 28 21 24 102

Continuous 16 12 11 12 51

Simple adaptive (+conditionally simple
adaptive)

4 (+4) 3 (+3) 2 (+3) 2 11 (+10)

More complicated adaptive
(+conditionally complicated adaptive)

3 (+1) 6 5 (+1) 5 (+5) 19 (+7)

Do not include prediction(s) of previous
period(s) at all

15 15 8 12 50

Includes (weighted) average of previous
prices

16 12 9 12 49

Complexity: Number of code lines 18.5 23.8 26.6 28.1 23.9
Simulation time (round 1=100) 100 100 173 295

Table 1: Characteristics of the strategies

All strategies use the same format (see Appendix 2). All start with a prediction for the

first period. Predictions in the subsequent periods can be conditional on the period (many

subjects use a strategy that differs in the first few periods from later periods) and can be

conditional on the history (previous realized prices and own predictions). Many strategies list

conditions under which specific sub-strategies are to be used. An example of such a strategy is

“if the last two realized prices differ more than 50, I will take the average of these prices,

otherwise I will take the last price as my prediction”. Note that on the border between the two

conditions (where the last two prices differ exactly 50) this strategy is discontinuous. Strategies

are classified as continuous if arbitrary small changes in the history always result in small

changes in the prediction. Only half of the strategies are continuous (see Table 1). However,

note that some discontinuities may have little effect on the dynamics because in many markets

some of the conditions are never satisfied. (See also Section 3.3 where we look at the relation

between stability of markets and characteristics of the participating strategies).

A simple form of adaptive expectations is the situation where the predicted price is a

weighted average of the previous predicted price and the previous realized price. Given that

subjects have no information about the underlying model, such a simple adaptive strategy seems

natural. However, only about 10% of the strategies are adaptive in this sense, whereas another

10% are conditionally adaptive (that is, the strategy is adaptive only if the sequence of past

prices and/or predictions fulfils certain conditions). Another 25% of the strategies seem to use
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a more complicated kind of adaptive expectations (some of them conditionally)4. Half of the

strategies do not include previous predictions at all.

Approximately half of the strategies use a weighted average of previous prices

somewhere in the strategy. Some of these strategies use all previous prices, whereas others

only use recent ones. Not all previous prices have the same weight if subjects try to anticipate

cycles. For example, a subject anticipating two-cycles may overweight the realized price of

two periods back.5

Finally, strategies have a tendency to become more complicated during the experiment. A

rough but simple measure of the complexity of a strategy is the number of lines used in the

simulation program. The average number of lines increased from 18 in round 1 to 28 lines in

the final round.6 Another measure of complexity is the time needed for the computer

simulations. Both complexity measures are displayed in the last row of table 1.

3.2 Dynamics

Short run dynamics: Success of the strategies

The incentives of the subjects are based upon the behavior of their strategies in the first 20

periods. Therefore the first 20 periods are of special interest. How close do the realized prices

come to the RE steady state? Figure 2 shows the quadratic distance to the RE steady state over

the periods. Recall that a different parameter C is used in each market and therefore each

market has a different RE steady state that has to be learned again. Two important

characteristics are seen in Figure 2. Firstly, the distance between the realized market price and

the RE steady state is largest in period 1 and decreases afterwards (the exception is in round

two, where the largest distance is found in period 3). Almost no improvement is observed after

the seventh period. Hence, in each round a short learning phase of about 7 periods is needed to

learn the new `price level’, after which the average distance to the RE steady state remains

approximately constant. The second important characteristic is that there is clear evidence of

learning between rounds; the prices in the third and fourth round move much

                                                            
4 For example, the first strategy of subject 8 was as follows (for t>2). IF ((P(t-2)�Pe(t-2) AND P(t-1)�Pe(t-
1)) OR (P(t-2)�Pe(t-2) AND P(t-1) �Pe(t-1))) THEN Pe(t)=( P(t-1)+ Pe(t-1))/2 ELSE Pe(t)=( P(t-1)+ P(t-
2)+2Pe(t-1))/4.
5 Note that a strategy that uses a weighted average of previous prices can behave very much like an adaptive
strategy. In an adaptive strategy the prediction in period t for period t+1 will be Pe(t+1)=(1-w)*Pe(t)+w*P(t)=
 (1-w)2*Pe(t-1)+(1-w)*w*P(t-1) +w*P(t) , etc, which is exactly the same as a weighted average of past prices
with exponentially decreasing weights w*(1-w) k for P(t-k). However, one would expect a subject who wants to
use an adaptive strategy to use the simple adaptive rule instead of a complicated weighted average rule.
6 This measure may underestimate the increasing complexity because during the experiment the programming
may have become more efficient due to increased experience of the programmer.
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Figure 2. The mean quadratic distance to RE steady state in each period
(620 simulations per round).

Round 1 Round 2 Round 3 Round 4

Mean
quadratic

forecasting
error over all

strategies

6448 8878 4608 3814

Mean
quadratic error

winner
3194 2946 2628 2016

Mean variance
first 20 prices

158.59 179.75 102.57 78.27

Winning
strategy

subject 15
Pe(t)=

0.75Pe(t-1)
+0.25Pmean

subject 14
Pe(t)=

1.5Pmean

-0.5P(t-1)

subject 15
Pe(t)=

0.75Pe(t-1)
+0.25Pmean

subject 18
Pe(t)=

Pe(t-1) +
(P(t-1)-Pe(t-1))1/(2t-1)

Table 2: Results of the simulations (620 simulations per round). In each simulation a market is
formed with 6 strategies which are submitted in that round. The quadratic error is the total error in
one market (20 periods), the mean quadratic error of a strategy is calculated by averaging the total
error in all simulations in which that strategy participated. The last row presents the prediction
formulas of the winning strategies in the later periods, the predictions in the early periods are not
displayed to limit the size of the table.
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closer to the RE steady state price than in the first two rounds. More experience thus leads to

price fluctuations closer to the RE steady state.

Table 2 summarizes the main results of the simulations in each of the four rounds. The

mean quadratic forecasting error over all strategies decreases after round 2. Subjects thus learn

to make better forecasting strategies during the experiment7. The mean quadratic error of the

winner decreases over the rounds from about 3200 to 2000.

We can compare the numbers of table 2 with the results of homogeneous naive or

adaptive players. If all players in a market started with a prediction of 50 and for the next

periods always predicted the previous price, they would very fast end up in a two-cycle (C-

50,C+20), the mean quadratic error would be 94,308 and the variance over the prices would be

1290. If all market participants would start with a prediction of 50 and would use the adaptive

rule Pe(t)=(P(t-1)+Pe(t-1))/2, the result would be a four-cycle (C-14.6,C+18.2,C-30.7,C+20).

In that case the mean quadratic error would be 24,899 and the variance of the prices 734. The

adaptive rule Pe(t)=(P(t-1)+3*Pe(t-1))/4 results in a two-cycle (C-12.7, C+19) with mean

quadratic error 4361 and price variance of 1448. Compared to these numbers the (winning)

strategies of our subjects do very well.

Both Figure 2 and Table 2 show that the strategies in round 1 perform better than the

strategies in round 2. Additional analyses were done to study this surprising increase in

forecasting errors from round 1 to 2. Only 5 subjects out of 28 had a lower average prediction

error in round 2 than in round 1. Of course, the quality of a strategy depends also on the other

strategies involved. Therefore we investigated for each subject whether the results would have

been better if that subject would not have changed the strategy from round 1 to 2 (while the

others would). For each subject we ran simulations in which the strategy of the first round was

coupled with 5 strategies of the second round (of other subjects). For 15 subjects the first round

strategy had a lower average prediction error than the second round strategy, whereas for 13

subjects it is the other way around. In this sense the strategies of round 2 were not (at least not

statistically significant) of a lower quality than the strategies of the first round. The errors in

these simulations were also compared with the errors of the first round simulations. All (29)

first round strategies do better when they are coupled with other first round strategies than

when they are coupled with second round strategies (Wilcoxon test p<0.0000). We conclude

                                                            
7 The number of strategies is lower in rounds 3 and 4 than in the first two rounds. The relatively bad
performance in rounds 1 and 2 is not caused by subjects who left the experiment after round 2. The missing
subjects in round 3 and 4 did equally well in round 1 and 2 as the other subjects (based upon the mean quadratic
error).



13

that the increasing errors from round 1 to round 2 are apparently due to interaction of

strategies of round 2, which make prediction harder for any strategy.

The third row of table 2 shows the volatility of the prices, as measured by the variance,

over the rounds. Prediction is easier if volatility is low, and indeed, we see the same pattern as

in the first row (quadratic errors). Volatility is much smaller in rounds three and four. Note that

the volatility of the prices is very low compared with the case of a homogeneous population of

naive or adaptive players and the corresponding stable 2- or 4-cycles (see above).

The last row of table 2 shows the formulas of the winning strategies in the later periods.

All winning strategies tend to be relatively simple. The winning strategy in round 1 and 3 is an

adaptive strategy in which the prediction is adapted in the direction of the mean price. The

winning strategy of round 2 anticipates 2-cycles and the winner of the final round uses an

adaptive strategy that is much more adaptive in early periods than later on.

Medium run dynamics

In many economic applications the short term is as least as important as the long term. The

horizon of the subjects was 20 periods, and we can sometimes observe convergence to a steady

state or to cycles even in this very short term9. However, within the first 20 periods it is hard to

observe cycles of a period longer than two or three and it may be hard to see whether what

looks like a cycle will eventually converge to a steady state. Therefore the medium run

dynamics, periods 51 to 100, were studied. By our definition, a sequence of prices converges

to a steady state if all prices in periods 51-100 are within a range of one point. A similar

criterion is used for cycles; for example in a 2-cycle the prices in all odd periods are within a

1-point range and the prices for all even periods are within a 1-point range (and we do not

observe a steady state).

Figure 3 shows the percentages of simulations that converge to a steady state or a cycle.

The first thing to notice is that convergence to a steady state price is relatively rare, and occurs

only in about 10% of all cases. Many low period cycles are observed, but the number of cycles

decreases over the rounds. The percentage of simulations that do not converge to a low period

cycle at all increases from about 45% in round 1 to about 75% in round 4.

                                                                                                                                                                                             
8 The exact mean quadratic errors and variance of the prices depend on C because of the first few forecasts
(e.g. the first forecast of 50 is better if C=50 than if C=80). The variances and quadratic errors presented here
are for the case C=65.
9 For example, in almost 5% of the simulations the prices of periods 16-20 are within a range of 1 point. The
percentages for the rounds 1 to 4 are 5.5%, 1.9%, 5.5% and 6.1% respectively.
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Figure 3: Medium term convergence to a steady state or a cycle. Based upon 620 simulations per
round and periods 51-100.

Long Run dynamics

In order to understand the short and medium run dynamics it is important to understand the

properties of the long run dynamics first. It is particularly important to understand the

attractors of the dynamical system determining the long run dynamical behaviour, because

these attractors typically will also affect the short and medium run dynamics. An attractor may

be a stable steady state, a stable cycle, or a more complicated strange attractor with chaotic

price fluctuations. In order to obtain an accurate picture of the underlying attractors, we have

focussed upon periods 951 to 1000. Figure 4 shows the results for the long run dynamics.

Convergence to a steady state price or a cycle is defined in the same way as in the medium run

analyses. As in the medium run analysis, convergence to a steady state price is rare and less

than 10% over all rounds. Compared with the medium run analysis convergence to a low order

stable cycle is observed more frequently, especially in round 3.

The case of nonconvergence and possible occurrence of chaos and strange attractors is of

special interest. In order to investigate whether the price fluctuations are chaotic, the well-

known Wolf algorithm (Wolf et al. (1985)) was used to estimate the largest Lyapunov
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Figure 4: Long term convergence to a steady state or a cycle. Based upon 620 simulations per round.
The classification of steady states and cycles is based upon periods 951-1000. Two different kinds of
nonconvergence simulations are distinguished based upon the estimated largest Lyapunov exponent
(1000 periods were used to estimate the Lyapunov exponent).

exponent (using prices in periods 1-1000)10. A positive Lyapunov exponent implies that the

system exhibits sensitive dependence upon initial conditions and is chaotic. We find that

almost 90% of the nonconvergent price series have a positive Lyapunov exponent.11 It is

important to note that each simulation, given the 6 predictions strategies, is a completely

deterministic system without any influences of external noise. The fact that in the final round

more than 60% of all simulations yield a positive Lyapunov exponent may thus be interpreted

as strong evidence for chaos in our strategy experiment.

In summary, one may characterize these results by saying that the forecasting errors

decrease significantly over the rounds, and that prices converge to some neighbourhood of the

RE steady state, while at the same time the price fluctuations become more complicated and the

fraction of chaotic price sequences increases.

                                                            
10 In applying the Wolf algorithm several parameters have to be selected, such as the embedding dimension, the
maximum allowable distance between initial points and the separation time. In the results presented below we
used an embedding dimension of 3, a maximum allowable distance of 0.5 and a separation time of 4, which are
in the order of magnitude of what is commonly used; see the discussion in Wolf et al. (1985). For other values
of these algorithm parameter values, similar results were obtained, and in particular the fraction of positive
largest Lyapunov exponents was roughly the same.
11 The remaining 10% typically has a slightly negative Lyapunov exponent close to 0, indicating quasi-periodic
behaviour or periodic behaviour with long period.
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3.3 What causes chaos?

The fact that so many price sequences are chaotic raises the question what exactly causes this

chaotic behavior. First we focus on the role of heterogeneity. Next we study whether there are

specific strategies that are the ‘rotten apples’ that prevent convergence (to a steady state or a

cycle). Finally we look whether continuity of the strategies plays a role.

Homogeneous vs. Heterogeneous agents

We study the behavior of the strategies in a representative agent framework. Simulations were

run in which all 6 strategies in the market are the same (31 simulations were run per strategy,

one for each C from 50 to 80). In the nonconvergent simulations Lyapunov exponents were

calculated.

Figure 5 shows the results of these simulations. Compared to the simulations with

heterogeneous agents convergence to a steady state price occurs more often (around 30%

versus 10%), whereas the percentage of nonconvergence simulations is relatively small

(approximately 10% versus 50% in the heterogeneous agents simulations). In more than 50% of

the cases, an individual strategy leads to a stable cycle. No clear pattern of changes over the

rounds is observed. Apparently, the same strategies that so often lead to chaotic price dynamics

in a heterogeneous agent situation typically cause prices to converge either to a steady state or

to a stable periodic cycle in a homogeneous agent situation.

Interestingly, for 99 of the 102 strategies the mean quadratic error in the homogeneous

markets is larger than in the heterogeneous markets. Strategies differ much more in predicting

quality in the homogeneous markets than in the heterogeneous markets. For example, in round 1

the mean quadratic error of strategies in the homogeneous market is between 2635 and 86486

(SD=23230) and in the heterogeneous market between 3194 and 10964 (SD=2515) (see also

Hommes et al. 1999b for a comparable result in cobweb laboratory experiments). The mean

variance of the prices is also much larger in the homogeneous markets (593, 736, 609 and 593

in rounds 1 to 4 respectively, versus 159, 180, 103 and 78 in the heterogeneous markets). In

contrast to the 'close to the steady state chaos' of a typical heterogeneous market, many

homogeneous agent cases are characterized by 'far from the steady state stable cycles'.12

                                                            
12 Note that the strategies, as designed by the subjects, are intended for use in heterogenous markets, which
may (partly) explain the lower quality of the forecasts in the corresponding homogenous markets.
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Figure 5: Long term convergence to a steady state or a cycle of simulations with individual strategies
in the homogeneous agent case. Based upon 31 simulations per individual strategy (C=50 to 80) The
classification of steady states and cycles is based upon periods 951-1000. Two different kinds of
nonconvergent simulations are distinguished based upon the estimated largest Lyapunov exponent
(1000 periods were used to estimate the Lyapunov exponent).

Do specific strategies cause chaos?

Next we study whether there are specific strategies that are the ‘rotten apples’ that prevent

convergence (to a steady state or a cycle). Prime candidates are the strategies that lead to

nonconvergent price sequences in the homogeneous market. If we discard all heterogeneous

situation simulations in which one of the participating strategies would not converge (to a

steady state or a stable cycle) in a homogenous situation, the percentage of nonconvergence

decreases only from 50% to 39%13. Apparently, chaos cannot be attributed (only) to these

strategies. In other words, even if all participating strategies are stable (in the sense that in the

homogeneous situation prices would converge to a steady state or a cycle), the interaction of

strategies leads to an unstable outcome in almost 40% of the cases.

Another way to look for the ‘rotten apples’ is to determine how often the prices converge

to a steady state, a cycle or not at all when a specific strategy participates in the market, and to

compare these numbers with the overall results. A strategy is defined as a ‘stabilizer’ (a

                                                            
13 The percentages of nonconvergence decreases in round 1 to 4 from 46.5 to 33.7, from 52.4 to 37.1, from
35.6 to 33.2 and from 65.0 to 54.7 respectively. These numbers are based upon the 1000 periods simulations.
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‘destabilizer’) if the price sequences of markets in which this strategy participates converge

more (less) often to a steady state and does less (more) often not converge at all14. In each

round we find 2 destabilizers and between 1 and 3 stabilizers. After removing the destabilizers

from the simulations, we find (of course, almost by construction) more convergence to a steady

state (14.4% instead of 10.1%) and less non-convergence (38% instead of 50%), but these

differences are not spectacular15.

Although the destabilizers apparently are not the (only) source of non-convergence and

chaos, it may be interesting to take a closer look at some characteristics of these strategies.

First, the destabilizers are typically stable in the homogeneous situations16, which shows that it

is the interaction with other strategies that causes the destabilizing force of these strategies.

Second, the destabilizers are not significantly less successful (in the heterogeneous markets)

than the other strategies (the average ranking is somewhat under the median, at the 67th

percentile)17. Third, returning to the general description of the strategies at the beginning of this

section, we find that 7 of the 8 destabilizers are not continuous, while 7 of the 8 stabilizers are

continuous. This leads to the more general question which characteristics of the strategies are

important for the price dynamics.

Characteristics of individual strategies and price dynamics

Over all, half of the strategies is not continuous (see table 1). Continuity of a strategy appears

to be unrelated to own average quadratic prediction errors and also unrelated to the average

quadratic prediction errors of the other market participants. This last point means that a

discontinuous strategy in a market does not make prediction harder for the other participants.

Most discontinuous strategies do not seem to be strange or unreasonable. The discontinuity

arises because the strategy tries to distinguish different situations that call for a different kind of

prediction rule, and the discontinuity occurs only at the border of different situations. A good

example is strategy 9 from round 4 (one of the destabilizers in that round):

t=1: Pe(1)=55,
t=2..4: Pe(t)=0.5*Pe(t-1)+0.5*P(t-1),
t>4: if (|P(t-1)-P(t-3)|<10 and |P(t-2)-P(t-4)|<10) then

Pe(t)=P(t-2) else Pe(t)=0.5*Pe(t-1)+0.5*P(t-1)

                                                            
14 Based upon a 5% statistical significance (binomial tests).
15 New 1000-periods simulations were performed without the destabilizers. The percentages of
nonconvergence decreases in round 1 to 4 from 46.5 to 29.0, from 52.4 to 47.4, from 35.6 to 27.1 and from
65.0 to 48.5, respectively. The percentages of convergence to a steady state increases in round 1 to 4 from
11.8 to 15.6, from 3.4 to 3.7, from 16.1 to 22.3 and from 9.2 to 16.1, respectively.
16 Two of the 8 destabilizers converge for all C’s to a steady state in the homogeneous situation, one to a two-
cycle, four to a four-cycle and only one does typically not converge.
17 The rankings of the destabilizers are in round 1 7th and 17th out of 29, in round 2 14th and last out of 28, in
round 3 12th and 18th out of 21 and in round 4 16th and last out of 24.
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This strategy checks for two-cycles and is adaptive otherwise. Prices in a homogeneous market

converge to a four-cycle, but in the heterogeneous simulations, prices do not converge in 78%

of the simulations when this strategy is one of the participants (compare with 65% in all

simulations in round 4). Apparently, the interaction of this strategy with some other strategies

leads to instability.

It is an interesting exercise to redo the heterogeneous simulations with only continuous

strategies. We find much more convergence to a steady state (41.5% instead of 10.1%), fewer

cycles (only 23.5% instead of 40%) but still a considerable number of non-convergent price

sequences (35% instead of 50%)18. Again, we can only conclude that the main source of

instability is not to be found in individual strategies, but in the interaction of different

strategies.

4. Concluding remarks

The strategy method has proven to be a successful tool in studying expectation formation. It

provides information about what kind of rules individuals use in forecasting prices and it

enables an analysis of the stability and instability of dynamic economic systems with

expectations feedback. Subjects use a wide variety of strategies and have a tendency to use

more complicated strategies when they gain more experience. In our simulations with

heterogeneous agents, only in about 10% of all cases the market settles down to the unique RE

equilibrium. After round 2, the mean quadratic distance between the realized market price and

the RE steady state decreases. However, at the same time, the complexity of the price

fluctuations increases. In the final round, in more than 60% of the cases apparently chaotic

price fluctuations around an unstable RE equilibrium price arise.

In order to investigate the causes of chaotic behavior, simulations of the same cobweb

model with homogeneous, individual strategies are run. In these simulations, convergence to the

RE equilibrium price occurs in roughly 30% of all cases, stable periodic price fluctuations in

about 60% of the cases, whereas chaos only arises in 10% of the cases. Moreover, in the

homogenous market simulations the mean squared forecasting errors and the variance of the

price fluctuations are significantly higher than in the heterogeneous markets. Apparently, in a

majority of cases the homogeneous markets converge to a far from the steady state stable

                                                            
18 Large differences exist between rounds in these simulations. The results of the 3rd round, with only 11
continuous strategies, have a large impact on the overall results. In these simulations 84.4% of the price
sequences converges to a steady state, only 4.4% to a cycle and 11.3% does not converge.
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cycle, whereas a heterogeneous markets converges most likely to close to the steady state

chaos. If we discard all heterogeneous situation simulations in which one of the participating

strategies would not converge in a homogenous situation, the percentage of non-convergence

decreases only from 50% to 39%. This means that, even if all participating strategies are stable

in the homogeneous situation (i.e., prices converge to a steady state or a cycle), in the

heterogeneous markets the interaction of these different strategies still leads to an unstable

outcome in almost 40% of the cases. Finally, characteristics of the participating strategies, like

continuity, seem to influence the stability. However, no characteristic of the individual

strategies seems crucial for the stability or instability of the market.

A tentative explanation of these results is as follows. The S-shaped supply curve (see

figure 1) is characterized by high marginal supply in a neighborhood of the RE equilibrium

price, which may cause (local) instability, and by low marginal supply far away from the RE

equilibrium price, which may cause stable periodic motion. Consider for example the case

where all strategies coincide with naive expectations, or some other simple forecasting rule.

An individual forecast below (above) the RE steady state leads to a realized market price far

above (below) the RE steady state, and the system converges to a regular, large amplitude

stable 2-cycle far from the RE steady state, with large and systematic forecasting errors. This

can not be an equilibrium however, since individual agents would have a strong incentive to

improve their forecasts and the cyclic pattern should be regular enough to learn from their

systematic mistakes and explore other, better prediction strategies. In a heterogeneous market

individual forecasts will typically be distributed over an interval containing the RE steady state

price leading to a realized market price not too far away from the steady state. In the early

stages of a heterogeneous market, this may lead to large amplitude (regular) price cycles

around the steady state, but as agents become more experienced they should be able to reduce

their forecasting errors to a reasonable level thus pushing realized market prices closer to the

RE steady state. However, as prices move closer to their steady state level, the cobweb system

moves to the steep part of the supply curve and enters the local instability region. A decrease of

the amplitude of the price fluctuations due to more experience is thus accompanied by an

increase of local instability apparently leading to small amplitude chaotic price oscillations.

This effect may be intensified by the increasing complexity of the submitted strategies over the

rounds. As prices get closer to the steady state and start fluctuating chaotically, it becomes

increasingly difficult for individuals to discover regularities in the observed patterns  and to

further improve forecasts. A heterogeneous market may thus end up in a boundedly rational

chaotic equilibrium in a neighbourhood of the (unstable) RE steady state, with agents using
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simple strategies with forecasting errors which are both of reasonable size and non-systematic,

that is,  their structure is hard to detect from time series observations.

The interaction of the different strategies together with the local instability of the steady

state is the main source of the complicated price fluctuations in the case with heterogeneous

agents. These results seem to be in line with the Adaptive Rational Equilibrium Dynamics

(ARED) introduced in Brock and Hommes (1997). The ARED is an evolutionary competition,

based upon predictive success, between simple predictions strategies, which can lead to

bifurcation routes to chaos and strange attractors.19 In the simplest of all dynamic economic

models, the cobweb model, with a unique but locally unstable RE steady state and no

exogenous random shocks, the interaction of boundedly rational agents can lead to instability

and chaos in a neighbourhood of the RE steady state. Future experimental and empirical work

should reveal how relevant these results are for other markets, especially for speculative risky

asset markets.

                                                            
19 Brock and Hommes (1997) focus their analysis mainly on the case with a sophisticated forecasting strategy,
such as rational expectations, which can be obtained at positive information costs, versus a simple strategy,
such as naive expectations, which is freely available. Hommes (1999) presents an example without any
information costs where evolutionary competition between simple strategies, driven by the predictive success
of the strategies, leads to chaotic price fluctuations in the cobweb economy. Brock and Hommes (1998)
demonstrate the possibility of chaotic fluctuations in evolutionary competition without information costs in an
asset pricing model.
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Appendix 1: Instructions for formulating a strategy (translated from Dutch)

Your strategy has to predict prices in a situation that is much like the experiment in which you participated.
Therefore we first summarize the essential features of that situation.

The situation
In this experiment you are the adviser to a producer. The nature of the product that is being produced by this
producer is not relevant in this experiment. At the start of each period you make a prediction of the price of the
product in that period. The producer you are coupled with decides how much to produce, based upon your
prediction of the price.
Several producers are active in one market. Every producer is coupled with exactly one adviser (participant in
this experiment) and every adviser with exactly one producer. The realized price is determined by the total
production of all producers in a market and the total consumer demand (the realized price is such that total
supply equals total demand).
In this experiment all strategies have the role of adviser; a computer program plays the role of both producers
and consumers.
After all predictions are collected, the computer calculates the realized market price. After that the next period
starts.

Information
There is only a limited amount of information you (your strategy) can use. You do NOT know:
The number of producers that are active in the market of your producer;
The predictions of the other participants;
How producers determine their production based upon your prediction;
How the price is determined by total demand and supply.
You DO know the realized prices of the previous periods as well as how good your prediction has been in these
periods.

The consumer demand and the way the production is determined by your prediction may differ between
markets. Therefore realized prices may also differ considerably between markets. You can interpret this as
follows: every simulation (of 20 periods) your strategy is coupled with a different producer (who may have a
different technology) who is active on another market than the previous producer you were coupled with.

How to formulate a strategy
A strategy is a complete plan of action. If you would give your strategy to someone else, he or she should be
able to make exactly the predictions that you yourself would have made.
Your strategy should comply with three requirements: your strategy should be complete, unambiguous and
informational correct. The requirement of completeness means that your strategy should provide a prediction
in all possible situations. The requirement of unambiguousness means that your strategy should provide exactly
one prediction that is a real number between 0 and 100 in all possible situations. The requirement of
informational correctness means that your strategy only uses information that is available at that moment.

Example of an incomplete strategy
“In the first period my prediction is 40. In the next periods my prediction is 60 if the previous price was larger
than 50 and 40 if the previous price was lower than 50”. This strategy is not complete because it provides no
prediction if the previous price was exactly 50.

Example of an ambiguous strategy
“In the first period my prediction is 70. In the next periods I will raise my prediction of the previous period
with 10 if my previous prediction was lower than the realized price, I will lower my prediction with 10 if my
previous prediction was higher than the previous price and I will maintain my prediction if my prediction error
in the previous period was less than 5.”
This strategy is ambiguous because it is unclear what the prediction should be if the previous prediction was
(for example) 3 above the realized price: should the prediction be maintained or decreased by 10? By
indicating which rule has priority this strategy can be made unambiguous.

Example of an informational incorrect strategy
“In the first period my prediction is 45. In the other periods my prediction depends on the price in period 5. If
the price in period 5 was larger than 40 I predict 30 and otherwise I predict 70”
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This (rather strange) strategy is informational incorrect because in period 2 through 5 it is unknown what the
price in period 5 will be.

In the examples above the strategies are described in words. However, it is easier to check whether a strategy
complies to all requirements if everybody uses the same notation.
The present period is indicated as t.
The information you can use in period t are the realized prices of the previous periods P(i), 1<=i<=t-1 and the
predictions of your strategy in the previous periods V(i), 1<=i<=t-1.

A strategy consists of two columns. In the first column you put the periods in which that part of your strategy
is valid, in column 2 you put your strategy for these periods. You can use conditions when describing your
strategy, like in the example of a (not necessarily successful) strategy below.

Periods: Prediction:
t=1 V(t)=70
t=2 V(t)=50
t>2 If |V(t-1)-P(t-1)|<10 then V(t)=P(t-1) else

V(t)=(P(t-2)+V(t-1))/2

Explanation
The prediction of the first period should be a number between 0 and 100 (because no information is yet
available).
In this example a number is also given in period 2.
In periods 3 to 20 this strategy first checks if the absolute value of the error of the previous period (|V(t-1)-
P(t-1)| ) was less than 10. If that is the case, the prediction is the previous period’s price. If that is not the case
the prediction is the mean of the price of two periods ago and the previous prediction.

Notation of more complicated strategies
If you want to construct more complicated conditional strategies, you have to use brackets. For example the
strategy "If |V(t-1)-P(t-1)|<10 then (If P(t-1)>60 then V(t)=P(t-1) else V(t)=V(t-1) ) else V(t)=(P(t-2)+V(t-
1))/2". In this strategy the prediction depends on the previous price, if the absolute error in the previous period
was less than 10. If you have experience with programming in Pascal or Basic, you may also use the regular IF-
THEN-ELSE statements of Basic or Pascal.
You may use all usual mathematical notations you need (like Ó). If you are not sure whether your strategy will
be clear for our programmer you should tell us when you hand in your strategy, and we will check the strategy
immediately.

How to check a strategy
Check the left column. Does the strategy predict a price in all periods? If not, your strategy is not complete.
Check the right column. For each cell in this column (each sub-strategy) you should check the completeness
and unambiguousness: is exactly one prediction generated in each possible situation? Check also the
information that is used in each column: is this information indeed available? In the example above the sub-
strategy in the bottom right cell uses the price of two periods ago, and such a strategy can only work from
period 3 onwards.

The computer simulations
All submitted strategies will be programmed and several thousands of simulations will be run. Each simulation
starts with the random draw of some strategies, these strategies will form a market for 20 periods. Next some
random parameters will be drawn which determine the demand and production curves. The market is run for 20
periods and for each participating strategy the quadratic prediction errors are calculated. After thousands of
simulations for each strategy the mean quadratic prediction error is calculated and a ranking is made. At the top
of this list is the strategy with the smallest mean quadratic error, and strategies below have an increasing mean
quadratic error.

Information about the simulations
As soon as the simulations are run, the ranking list will be made public on the website of CeNDEF. On this list
all strategies are identified with a personal code.
A printed version of the ranking list will be distributed at the Monday classes. All participants will then also get
a printout of the results of 5 simulations in which their strategy participated. These 5 simulations are randomly
chosen.
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Appendix 2: example of a strategy form (translated from Dutch)

Strategy Form

Your personal code: ............

Your strategy:

Period: Prediction:

t=1 V(t)=....

Please use the following notation:
t period number
P(t) realized price in period t
V(t) your prediction in period t

The information you can use in period t are the realized prices of the previous periods P(i),
1<=i<=t-1 and the predictions of your strategy in the previous periods V(i), 1<=i<=t-1.

We will do the best we can, but in case you later find out that the programmer did not program
your strategy the way you meant it, there is nothing we can do about it. The results of the
simulations are final. Therefore, be sure to make exactly clear what you want your strategy to
be and please write legible .
Don’t forget to fill in the questionnaire!
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Appendix 3: example of feedback (translated from Dutch)
This is the feedback subject 1 (who used an adaptive strategy) received after round 2

Results Strategy Experiment Round 2
Below you find the ranking of the second round. The table displays for each student the mean
quadratic error over 20 periods. The student with code 14 has won the fifty guilders of this
round!

Strategy Mean Quadratic Error
214 2946.62
215 3876.26
227 4347.99
201 5077.21
213 5459.69
210 5718.21
216 5872.36
205 5909.91
209 6953.06
206 7620.94
229 7699.34
224 7752.06
211 7937.15
226 8253.44
223 8287.59
218 8377.60
225 8532.96
204 8615.77
221 8891.20
203 9532.42
219 9866.34
207 10216.90
228 10486.71
212 11126.55
208 14791.05
222 16355.44
202 17282.80
220 20784.03

On the next two pages you will find the results of 5 (randomly chosen) simulations. This may
help you to get an impression about the situations in which your strategy performed well or
poor.

You can hand in your third strategy during the classes at Thursday February 4 and Monday
February 8. We will then check your strategy immediately. Please also hand in the short
questionnaire. Only if you hand in both a strategy and a questionnaire you will earn the 5
guilders fee.

You can also find this ranking and the ranking of the next rounds on internet:
www.fee.uva.nl/cendef/
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Strategy: 201
Period   Prediction Realized Price Quadratic Error
 1          50.00         46.77          10.41
 2          49.68         60.04         107.33
 3          50.71         33.10         310.15
 4          48.95         66.93         323.14
 5          51.20         16.78        1184.83
 6          46.90         71.06         583.97
 7          49.92         27.37         508.53
 8          47.10         62.90         249.62
 9          49.07         34.38         215.94
10          47.24         65.40         330.07
11          49.51         21.49         784.95
12          46.01         70.10         580.65
13          49.02         24.19         616.45
14          45.91         65.94         400.99
15          48.42         30.44         323.00
16          46.17         65.70         381.28
17          48.61         25.25         545.84
18          45.69         68.81         534.58
19          48.58         23.66         620.98
20          45.47         67.43         482.37
                                       9095.11
Strategy: 201
Period   Prediction Realized Price Quadratic Error
 1          50.00         96.66        2176.73
 2          54.67         82.84         794.03
 3          57.48         39.31         330.33
 4          55.67         84.41         826.15
 5          59.26         92.79        1124.14
 6          63.45         48.94         210.65
 7          61.64         80.47         354.73
 8          63.99         93.56         874.42
 9          67.69         52.10         242.95
10          65.74         73.28          56.95
11          66.68         94.30         762.80
12          70.13         60.78          87.40
13          68.96         54.15         219.37
14          67.11         93.58         700.40
15          70.42         74.83          19.43
16          70.97         51.10         394.99
17          68.49         93.11         606.15
18          71.57         88.36         282.04
19          73.67         45.85         773.68
20          70.19         85.69         240.41
                                      11077.76
Strategy: 201
Period   Prediction Realized Price Quadratic Error
 1          50.00         93.00        1848.94
 2          54.30         73.11         353.63
 3          56.18         70.57         207.09
 4          57.62         69.63         144.23
 5          59.12         80.61         461.70
 6          61.81         60.73           1.16
 7          61.67         87.98         691.98
 8          64.96         38.77         685.85
 9          61.69         81.28         384.08
10          64.14         78.52         206.81



27

11          65.93         71.68          32.96
12          66.65         67.53           0.77
13          66.76         80.77         196.38
14          68.51         55.41         171.79
15          66.87         91.05         584.61
16          69.90         36.82        1093.82
17          65.76         81.02         232.77
18          67.67         80.04         153.01
19          69.22         63.75          29.92
20          68.53         78.48          98.91
                                       7580.40
Strategy: 201
Period   Prediction Realized Price Quadratic Error
 1          50.00         76.37         695.12
 2          52.64         62.26          92.57
 3          53.60         63.62         100.42
 4          54.60         81.52         724.46
 5          57.97         39.44         343.02
 6          55.65         84.79         848.89
 7          59.29         60.07           0.60
 8          59.39         63.66          18.21
 9          59.92         85.03         630.52
10          63.06         36.82         688.41
11          59.78         82.76         527.90
12          62.65         63.41           0.57
13          62.75         61.64           1.23
14          62.61         85.00         501.56
15          65.41         38.45         726.50
16          62.04         81.65         384.41
17          64.49         63.40           1.18
18          64.35         61.84           6.30
19          64.04         84.51         419.04
20          66.60         37.75         832.43
                                       7543.34
Strategy: 201
Period   Prediction Realized Price Quadratic Error
 1          50.00         83.39        1115.13
 2          53.34         71.13         316.53
 3          55.12         42.39         161.94
 4          53.85         72.43         345.25
 5          56.17         68.14         143.25
 6          57.66         62.56          23.93
 7          58.28         69.25         120.53
 8          59.65         52.17          55.99
 9          58.71         76.86         329.35
10          60.98         55.22          33.17
11          60.26         68.87          74.03
12          61.34         61.71           0.14
13          61.38         64.87          12.18
14          61.82         60.85           0.94
15          61.70         70.44          76.48
16          62.79         53.29          90.38
17          61.60         74.70         171.44
18          63.24         54.14          82.89
19          62.10         69.65          57.03
20          63.05         60.27           7.73
                                       3218.32
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