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1. Introduction 

Crawford & Sobel (1982) introduced cheap talk games with asymmetric in-

formation, which have found many applications.1 Equilibrium selection is im-

portant in these games, as they tend to have multiple equilibria with very 

different levels of information transmission. In this paper, we test the Average 

Credible Deviation Criterion (ACDC), introduced in De Groot Ruiz, Offerman 

& Onderstal (2012a). Many other equilibrium refinements and solution concepts 

have been proposed for cheap talk games2 and some of them have found empiri-

cal support in the lab. However, these concepts are not able to predict experi-

mental behavior across a wider range of cheap talk games. In contrast, ACDC 

selects equilbria under general conditions. Its predictions are meaningful in 

previously analyzed settings and can organize behavior well in existing experi-

ments meant to study other concepts. 

ACDC builds on binary stability criteria based on credible deviations, in par-

ticular neologism proofness (Farrell, 1993) and announcement proofness (Mat-

thews, Okuno-Fujiwara & Postlewaite, 1991). These concepts are based on the 

observation that out-of-equilibrium messages can have a literal meaning and 

propose conditions under which messages are credible.3 Equilibria that admit 

such credible deviations are considered unstable. Unfortunately, in many games 

these criteria do not select a unique equilibrium. The idea behind ACDC is that 

the credible deviation approach is sound, but that the insistence on a binary 

distinction between stable and unstable equilibria is problematic. In particular, 

                                     
1 Applications range from the presidential veto (Matthews, 1989), legislative committees 

(Gilligan & Krehbiel, 1990) and political correctness (Morris, 2001) to double auctions (Mat-
thews & Postlewaite (1989); Farrell & Gibbons (1989)), stock recommendations (Morgan & 
Stocken, 2003) and matching markets (Coles, Kushnir, & Niederle, Forthcoming). 

2 The list includes neologism proofness (Farrell, 1993), announcement proofness (Matthews, 
Okuno-Fujiwara & Postlewaite, 1991), Partial Common Interest (Blume, Kim & Sobel, 1993), 
the recurrent mop (Rabin & Sobel, 1996) and No Incentive To Separate (Chen, Kartik & Sobel, 
2008). 

3 See Blume, DeJong, Kim & Sprinkle (1998) and Agranov & Schotter (2011) for experi-
mental studies on the role of language in cheap talk games. 
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ACDC assumes that credible deviations matter for the stability of equilibria but 

that they matter in a gradual manner. On this basis, ACDC can select the most 

plausible equilibria (ACDC equilibria), even in games where no equilibrium is 

entirely stable. Moreover, it gives a relative measure of an equilibrium’s instabil-

ity, so that our approach also predicts for which games the ACDC equilibrium is 

expected to perform well. 

In this study, we test the predictions of ACDC in a class of continuous exter-

nal veto threat games. These games allow for a clean manipulation of the size 

and frequency of credible deviations. Furthermore, they can have a large equilib-

rium set, which previous concepts cannot refine. For these games, we show how 

the ACDC concept is grounded on a simple ‘neologism dynamic’. The neologism 

dynamic is a best response dynamic with the additional feature that Senders can 

send credible neologisms, which are believed by Receivers. Two salient initial 

conditions for dynamic models are the babbling strategy and the naive strategy. 

Senders who babble refrain from transmitting information by randomizing their 

report. Naive Senders simply report their type. In contrast to a best response 

dynamic and a level-k analysis, the neologism dynamic is not sensitive to which 

of these initial conditions applies. In particular, the neologism dynamic neatly 

converges to the ACDC equilibrium when its instability measure is low whereas 

the convergence process is more messy when the instability measure is higher. 

Our experimental results are the following. First, neologism proofness and 

announcement proofness perform well in a setting where their prediction is 

unique. Second, the ACDC equilibrium performs best if all equilibria are unsta-

ble according to neologism proofness and announcement proofness, even if there 

is a large set of equilibria. Third, the ACDC equilibrium in similar games 

performs worse when its stability according to ACDC decreases. Our findings 

provide evidence that the neologism dynamic traces experimental behavior quite 

well. As a consequence, the ACDC concept does a good job predicting which 

equilibrium attracts behavior best. 

Turning to the experimental literature, we see that relatively little experi-

mental work exists on equilibrium selection in cheap talk games. Blume, DeJong 
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& Sprinkle (2001) test the predictions of their Partial Common Interest criterion 

(PCI). This criterion favors the finest partition in which types in each partition 

element unambiguously prefer to be identified as members of that element (see 

also section 2). In their series of discrete games, PCI performs better than 

neologism proofness. In De Groot Ruiz et al. (2012a), we argue that ACDC can 

explain Blume et al.’s experimental data at least as well as PCI for all games 

that they tested. ACDC performs better than PCI in continuous games like the 

Crawford-Sobel game and our veto-threat game in which PCI fails to predict 

any communication while subjects are actually quite successful in communi-

cating. 

Experimental work on the Crawford-Sobel game provides evidence that the 

most informative equilibrium performs best (Dickhaut, McCabe & Mukherji 

(1995), Cai & Wang (2006) and Wang, Spezio & Camerer (2010)).4 This is 

predicted by ACDC (see De Groot Ruiz et al. (2012a)) as well as by No Incen-

tive To Separate (NITS) and influentiality.5 Furthermore, the evidence suggests 

that as the preferences of Sender and Receiver become better aligned, the most 

informative equilibrium performs better, which is predicted by ACDC but not 

by NITS or influentiality. The present study is the first systematic experimental 

test of whether and to what extent credible deviations matter for the stability of 

cheap talk equilibria. In addition, it presents a rigorous test of ACDC in new 

experiments.6 

                                     
4 The focus of our paper is on what makes communication of private information credible. A 

different strand of the experimental literature deals with the question how players can credibly 
communicate their intentions (Davis & Holt (1988), Cason (1995), Charness (2000), Ellingsen & 
Johannesson (2004), Gneezy (2005), Charness & Dufwenberg (2006), Lundquist, Ellingsen, 
Gribbe & Johannesson (2009), Serra-Garcia, Van Damme & Potters (2011)). Crawford (1998) 
provides a survey of papers on cheap talk experiments and DellaVigna & Gentzkow (2010) 
review field evidence on persuasive communication. 

5 The NITS criterion of Chen et al. (2008) selects the equilibrium in which the ‘lowest type’ 
has no incentive to separate, i.e. where the lowest type prefers her equilibrium outcome to the 
outcome she would get if she could reveal her type (see Section 2). The influentiality criterion 
selects those equilibria with the highest number of actions. 

6 Our model is a cheap talk bargaining game with asymmetric information. Experimental 
work on bargaining games with private information includes Radner & Schotter (1989), 
Forsythe, Kennan & Sopher (1991), Rapoport & Fuller (1998), Rapoport, Erev & Zwick (1995), 
Daniel, Seale & Rapoport (1998), Valley, Moag & Bazerman (1998), Schotter, Snyder & Zheng 
(2000) and Croson, Boles & Murnighan (2003).  
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Next to equilibrium selection, previous experimental work on cheap talk 

games primarily deals with two related themes. The first theme concerns the 

question how much information is transmitted between Sender and Receiver and 

how this compares to what is expected in the equilibrium in which the most 

information is communicated. So far the results are mixed. Agranov & Schotter 

(2012) observe the ‘right’ amount of information transmission in a coordination 

game whereas Cai & Wang (2006) find that subjects overcommunicate compared 

to the most informative equilibrium. In our experiment, we find that Senders’ 

messages are as informative as would be expected in the ACDC equilibrium 

benchmark. In this sense our results are closer to the findings of Agranov & 

Schotter than to those of Cai & Wang.  

The other theme in the experimental literature is the extent to which Send-

ers’ messages are driven by a preference to tell the truth or to avoid lies. 

Sánchez-Pagés & Vorsatz (2007; 2009) show that some subjects are willing to 

incur costs to punish liars and that these also tend to be the subjects who 

refrain from lying themselves. Such lying aversion is consistent with the over-

communication result of Cai & Wang (2006). On the other hand, in a leadership 

game, Agranov & Schotter (2011) find that leaders exhibit a great deal of 

strategic sophistication and lie easily. In our bargaining game, we framed the 

Sender’s message as a ‘suggestion for how the Receiver should behave’ instead of 

as a message about ‘the true state’. In agreement with this framing, our evi-

dence suggests that Senders used the opportunity to communicate in a strategic 

way. Still, in two of our three treatments subjects deviated in the direction of 

overcommunication (but not significantly so).      

Our paper has the following structure. Section 2 presents a simple illustration 

that explains the main existing equilibrium refinements. In section 3, we discuss 

the theory we require to derive the hypotheses we wish to test in our experi-

ment. We present the experimental games we study, introduce ACDC and 

discuss the issue of equilibrium selection. In section 4, we provide the experi-

mental design. In section 5, we present the experimental results. In section 6, we 

look at the dynamic aspects of our data and discuss the neologism dynamic. In 
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section 7, we present an additional treatment to further test ACDC. Section 8 

concludes. Proofs are relegated to Appendix A. 

2. Equilibrium Refinements for Cheap Talk Games 

In this section, we illustrate the main existing refinements in cheap talk 

games on the basis of a simple example. A cheap talk game is a two-player game 

between a privately informed Sender and a Receiver. 7 Most cheap talk games 

examined in the literature are two-stage games in which the Sender sends a 

message to the Receiver after which the Receiver responds by taking an action. 

The payoffs of both the Sender and the Receiver depend on the Receiver’s 

action and the Sender’s private information but not on the message sent by the 

Sender. Table 1 presents Blume et al.’s (2001) Game 4 as an example of a cheap 

talk game. 

 

TABLE 1
REPRODUCTION OF GAME 4 OF BLUME ET AL. (2001) 

 1a  2a  3a  4a  5a  

1t  800, 800 100, 100 0, 0 500, 500 0, 400

2t  300, 100 100, 800 0, 0 500, 500 0, 400

3t  0, 0 0, 0 500, 800 0, 0 0, 400

Notes: All the three types 1 2 3, ,t t t  of the Sender are equally likely and the Receiver can im-

plement one of the actions 1 5,...,a a . Entry i,j represents the utility for the Sender and the 

Receiver respectively in the case of Sender type it  and Receiver action ja . 

 

Game 4 has two perfect Bayesian Nash equilibrium outcomes. The game has 

a pooling equilibrium in which all Receiver types send the same message and the 

Sender chooses action 5a . In addition, a partially separating equilibrium exists 

where types in the set 1 2{ , }t t  send the same message that differs from 3t ’s 

message. The Sender picks action 4a  [ 3a ] after receiving 1t  and 2t ’s [ 3t ’s] mes-

sage. 
                                     
7 We will refer to the Sender as a ‘she’ and the Receiver as ‘he.’  
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To select among equilibria in cheap talk games, several equilibrium refine-

ments have been proposed in the literature. Standard signaling refinements in 

the vein of Kohlberg and Mertens’ (1986) strategic stability have no bite in 

cheap talk games since messages are costless. For a similar reason, the (Agent) 

Quantal Response Equilibrium (McKelvey & Palfrey, 1998), which can often 

select equilibria in signaling games, is not predictive in cheap talk games.8 

To address the selection problem for costless communication, Farrell (1993) 

considered credible deviations from equilibrium. He argued that, in contrast to 

the standard assumption in game theory, communication proceeds through a 

pre-existing natural language. Hence, people can use ‘neologisms,’ out-of-

equilibrium messages with a literal meaning that will be understood (although 

not necessarily believed). Farrell considers neologisms which literally say: “pro-

pose action a , because my type is in set .N ” Farrell deems a neologism credible 

if and only if (i) all types t  in N  prefer a  to their equilibrium action a(t), (ii) 

all types t  not in N  prefer their equilibrium action a(t) to a  and (iii) the best 

response of the Receiver after restricting the support of his prior to N  is to play 

a . We will denote credible neologisms by ,a N . An equilibrium is neologism 

proof if it does not admit any credible neologism.9 Farrell argues that only 

neologism proof equilibria are stable, since rational players would move away 

from equilibria which admit credible neologisms. In Game 4, neither of the 

equilibria is neologism proof. The credible neologisms are { }1 1,a t  for the 

partially separating equilibrium and { }4 1 2, ,a t t  and { }3 3,a t  for the pooling 

equilibrium.  

Matthews et al. (1991) consider more elaborate messages, called announce-

ments, and propose three types of credible deviations. Weakly credible an-

nouncements are similar to neologisms, but allow deviating types to distinguish 

                                     
8 The Agent Quantal Response Equilibrium (A-QRE) is the extensive form game variant of 

the Quantal Response Equilibrium. The pooling equilibrium of a cheap talk game is always a 
limiting principal branch A-QRE. We come back to A-QRE in section 6.3. 

9 Myerson (1989) introduces credible negotiation statements, which are similar to credible 
neologisms. Myerson is able to obtain a solution concept that guarantees existence but at the 
cost of assuming the presence of a mediator. 
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amongst themselves. A weakly credible announcement that should be believed if 

the Receiver realizes that types can send multiple announcements is a credible 

announcement. A credible announcement that survives a rigorous Stiglitz-

critique is strongly credible. Equilibria that admit no (weakly/strongly) credible 

announcements are called (strongly/weakly) announcement proof. Neither 

equilibrium in Game 4 is (strongly) announcement proof. The pooling equilibri-

um is not weakly announcement proof either, but the partially separating 

equilibrium is: The announcement { }1 1,a t  is not strongly credible because type 

2t  prefers to send out the announcement as well because she believes the Re-

ceiver to infer her type if she sends out the equilibrium message instead of the 

announcement. 

Blume et al. (2001) introduce the Partial Common Interest (PCI) criterion. A 

partition of the typeset satisfies PCI “if types in each partition element unam-

biguously prefer to be identified as members of that element, and there is no 

finer partition with that property” (Blume et al., 2001, p. 83). The PCI criterion 

predicts that types in different partition elements send different messages. In 

Game 4, the partition 1 2 3{ , }, { }t t t  satisfies PCI so that the PCI criterion selects 

the partially separating equilibrium.10  

Chen et al. (2008) propose the No Incentive To Separate (NITS) criterion. 

The NITS criterion starts by specifying a ‘lowest type,’ a type with the property 

that all other types prefer to be revealed as themselves rather than as that 

lowest type. An equilibrium survives NITS if the lowest type has no incentive to 

separate, i.e. if the lowest type prefers her equilibrium outcome to the outcome 

she would get if she could reveal her type. In Game 4, both type 2t  and type 3t  

can be identified as the lowest type. The pooling equilibrium does not survive 

NITS because both types have an incentive to reveal themselves and induce the 

seller to take another action than the equilibrium action. The partially separat-

                                     
10 The finer partition 21 3{ }, { }, { }t t t  is inconsistent with PCI because type 2t  strictly prefers 

the Receiver’s best response 1a  to his belief that the Sender type is in 1{ }t  over the Receiver’s 

best response 2a  if he believes the type to be 2t  for sure. 
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ing equilibrium does survive NITS because type 2t  has no incentive to deviate 

and type 3t  is already revealed in equilibrium (so that the Sender cannot further 

improve). Chen et al. (2008) show that the NITS criterion typically selects the 

most informative equilibrium in the Crawford-Sobel game, in contrast to PCI 

that typically predicts no communication because the only partition of the type 

set that is consistent with PCI consists of one element, i.e., the entire type set. 

As said, ACDC differs from the above equilibrium selection criteria by deviat-

ing from the notion that an equilibrium is either stable or unstable. For exam-

ple, according to neologism proofness, neither of the equilibria is stable in Game 

4. However, the partially separating equilibrium seems more stable than the 

pooling equilibrium for two reasons. First, in the partially separating equilibri-

um, only type 1 sends out a credible neologism, while all types are part of a 

credible neologism in the pooling equilibrium. Second, type 1t  gains more by 

deviating from the pooling equilibrium than from the partially separating 

equilibrium. 

As we will explain in more detail in the next section, ACDC measures the 

stability of an equilibrium by taking both the mass of deviating types and 

incentives to deviate into account. Indeed, ACDC selects the partially separating 

equilibrium as the most likely one. Notice further that Game 4 is not particular-

ly useful to distinguish between different refinements because if they are selec-

tive they select the same equilibrium. In the next section we will introduce a 

richer veto-threat game in which ACDC makes a different prediction than other 

selection criteria. 

3. Theory 

In this section, we develop the theory we use to construct the hypotheses for 

our experiment.11 In subsection 3.1 we introduce the game G(B), on which our 

                                     
11 The section builds heavily on our analysis in De Groot Ruiz, Offerman & Onderstal 

(2012b) 
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main treatments are based, and apply existing refinements to this game. In 3.2, 

we introduce ACDC and show how it works out in G(B).  

3.1. G(B) 

G(B) is a two-player veto threats cheap talk game between an informed 

Sender and an uninformed Receiver. The outcome of the game x is a point in 

the interval [0, ]B  or the disagreement point ,δ ∉  where B  stands for bound-

ary. The payoffs of the Receiver and the Sender are given by ( )RU x  and 

( , ) :SU x t   

 

(1) 

2
( ) 60   for all [0, ],

5
RU x x x B= − ∈  

( , ) 60 | |  for all [0, ],SU x t x t x B= − − ∈  

( ) ( , ) 0.R SU U tδ δ= =  

 

On the interval, the Receiver prefers smaller outcomes to larger outcomes. The 

payoffs of the Sender on the interval depend on her type t, which is drawn from 

a uniform distribution on [0, ].B  The larger the distance between t and 

[0, ],x B∈  the lower the Sender’s payoff. Both players receive a payoff of 0 if δ  

is the outcome, regardless of t. The Receiver prefers all outcomes on the line 

smaller than 150 to ;δ  the Sender prefers δ  to all outcomes on the line more 

than 60 away from her type t.  

At the start of the game, nature draws a type t. Everything is common 

knowledge, except t. The game then proceeds as follows. Nature informs the 

Sender of t. Subsequently, the Sender sends a costless message m  to the Receiv-

er. Next, the Receiver proposes action [0, ].a B∈  Finally, the Sender accepts (v 

= 1) or rejects (v = 0). If the Sender accepts, a is the outcome of the game, and 

if she rejects, δ  is the outcome. Note that all messages are costless for the 

Sender. We assume 120B ≥  because under this condition the boundary does 
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not affect the set of equilibrium actions. The model is close to the cheap talk 

game with veto threats of Matthews (1989). The main difference is that in our 

model the disagreement point does not lie in the interval.  

A strategy for the Sender consists of a message strategy :T Mμ →  and an 

acceptance strategy : {0,1}.A Tν × → The strategy of the Receiver is an action 

strategy α : M A™ .12 Let SΣ  be the set of Sender strategies and RΣ  the set of 

Receiver strategies.  Let μ α ν{ , , }  be a strategy profile and Σ  the set of all 

strategy profiles. Define ( )ν ν νδ+= ⋅ ⋅ −( , ; ) ( , ) ( , )( , ) ( , ) 1R R Rx t xV U x t tt x tU  and 

( )ν ν νδ= ⋅ + ⋅ −( , ; ) ( , )( , ) ( , ) 1 .( , )S S SV Ux t x t xt U tx t  Finally, let the Receiver have 

prior beliefs β =0( () )t f t  and posterior beliefs β( | )t m respectively. A pure 

strategy perfect Bayesian equilibrium (equilibrium henceforth) σ  = μ α β{ , , }  is 

characterized by the following four conditions: 

 

For each , ( ) arg max ( ,), ; )(St T m mt V tα ν∈ ∈  

(2) For each , argmax( ) ( , ; ) ( | ) ,a A
R

T
m V a dM t t m tm ν βα ∈∈ ∈ ∫  

 ( , ) 1 if ( , ) ( , ) and ( , ) 0 if ( , ) ( , ),S S S Sa t U a t U t a t U a t U tν δ ν δ= > = <  

 0( ) is derived from  and using Bayes Rule whenever possible. mβ μ β  

 

We say a type t induces action a, if the Receiver always takes action a after any 

message t sends in equilibrium. 

We consider the following type of equilibria. Following Matthews, we require 

the Receiver to play pure strategies and require Senders to always induce ac-

tions that are payoff-maximizing (in the spirit of Selten’s (1975) trembling hand 

perfection). From now on, we will use ‘equilibrium’ to refer to a perfect Bayesian 

                                     
12 For ease of exposition, we define equilibrium for pure strategies. For our purposes this is 

not restrictive. The refinement we will use requires Receivers to play pure strategies. In addition, 
all equilibrium outcomes are partition equilibria outcomes that can be supported by a pure 
Sender strategy. 
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equilibrium satisfying these two requirements. 13 As we show in De Groot Ruiz, 

Offerman & Onderstal (2012b), all equilibria in such veto threat games are 

partition equilibria. A partition equilibrium can be characterized by the finite 

set of actions 1 2, ,...,{ }nA a a a∗ =  the Receiver proposes in equilibrium, where 

1 2 ... .na a a< < <  The number of equilibrium actions n is called the size of the 

equilibrium. We say a type t induces an action ,a ′  and write ′=( ) ,a t a  if the 

Receiver proposes a′  after any message m the Sender sends. Each type induces 

an action ia A∗∈  which maximizes her payoff and accepts it if and only if 

( , ) 0.S
iU a t ≥ 14 (In G(B) the payoff maximizing action is simply the action 

closest to her type.) This means that a partition of the type space 

0 1 10 1n nt t t t−= < < << =  exists such that each type in 1( , )i it t−  induces .ia  

It is straightforward to check that a set of actions 1 2 ... naa a< < <  character-

izes a partition equilibrium if and only if 

 

(3) 
τ τ

τ τ
−

∈ ≥
∈ =∫

1

{ : ( , ) 0}
argmax ( ) ( )  for all 1,..., ,

i

S

i

t
R

i a A U a
t

a U a I d i n  where 

0 0, 1nt t= =  and 1( , ) ( , )  for all 1,..., 1.S S
i i i iU a t U a t i n+= = −  

 

The game has two equilibria: a pooling (size-1) equilibrium and a 

(semi)separating size-2 equilibrium. For both equilibria, the set of equilibrium 

actions the Receiver takes does not depend on :B  

 

Proposition 1 G(B) has two equilibria: a pooling equilibrium Pσ  1{ 45}a =

and a separating equilibrium Sσ  1 2{ 0, 60}.a a= =  

 

                                     
13 There is an infinite number of equilibria that induce the same equilibrium outcome. These 

essentially equivalent equilibria just differ in the messages that are used. For simplicity, we refer 
to a class of equilibria inducing the same equilibrium outcome simply as ‘an equilibrium.’  

14 There will be a set of measure zero of types for which 1( , ) ( , )S S
i iU a t U a t+=  for some i. It 

does not matter which action they induce. 
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In the pooling equilibrium, all types induce 45, whereas in the separating 

equilibrium all Sender types in the interval [0, 30) induce action 0a =  and all 

Sender types in the interval (30, ]B  induce action 60.a =  In the separating 

equilibrium, the Sender always accepts, and in the pooling equilibrium all 

Senders in [0, 105] accept.  

The intuition behind the proposition is the following. Since all equilibria are 

partition equilibria, the Receiver’s posterior beliefs consist of intervals. If the 

Receiver believes the Sender’s type is uniformly distributed on an interval [ , ]t t , 

he faces the following trade-off when looking for a best response. As the pro-

posed action increases (up to min{ 60, 60}t t+ − ), the probability of acceptance 

increases but the utility conditional on acceptance decreases. Senders best 

respond by inducing the action closest to their type. As in any cheap talk game, 

there is a pooling equilibrium in which all Senders employ the same message 

strategy and the Receiver ignores all messages. In G(B), also a size-2 equilibri-

um exists. Higher size equilibria do not exist, roughly because there is a mini-

mum distance between two positive equilibrium actions and a maximum to the 

value an equilibrium action can take. 

At this point two questions arise. First, is one equilibrium more plausible 

than the other? Second, does B influence the stability of the equilibria? In G(B), 

neologism proofness, strong announcement proofness, and announcement proof-

ness15 coincide.16,17 Consequently, for ease of exposition, we limit our discussion 

of credible deviations to credible neologisms. In G(B) two types of credible 

neologisms can exist. A ‘low’ neologism which roughly says “I am a low type and 

prefer 0 to the lowest equilibrium action and so do you, so play 0” and a ‘high’ 

neologism which roughly says “I am a high type, and it is probable that I will 

not accept the highest equilibrium action, so it is better for both of us if you 

                                     
15 In line with the trembling hand refinement, we assume that types strictly prefer to induce 

an action a  if ( , ) ( ( ), )S SU a t U a t t>  even if the Sender rejects a . 
16 The reasons are that all weakly credible announcements are equivalent to a credible neolo-

gism (for similar arguments that there is at most a size-2 equilibrium) and that all types can 
send at most one credible neologism.  

17 All equilibria in G(B) are weakly announcement proof, as in almost all cheap talk games. 
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propose something higher.” As the following proposition shows, the pooling 

equilibrium is never neologism proof and the separating equilibrium is only 

neologism proof if B = 120.  

 

Proposition 2 The pooling equilibrium admits the credible neologisms 

0,[0,22.5]  and 
15

min{ 60,75},[min{ ,60}, ] .
2

B
B B

−
〈 − 〉  The separating equilibrium 

is neologism proof if 120.B =  For 120,B >  the separating equilibrium admits the 

credible neologism min{ 60,80},[min{ ,70}, ]
2
B

B B〈 − 〉 . 

 

So, for 120B >  neologism proofness (and announcement proofness) are silent 

about the stability of the separating equilibrium relative to the pooling equilib-

rium. In addition, they are silent about whether the separating equilibrium is 

more stable if 121B =  than, say, if 210B = . In De Groot Ruiz et al. (2012a) 

we show that the same holds for other cheap talk refinements including commu-

nication proofness (Blume & Sobel, 1995) and the recurrent mop (Rabin & 

Sobel, 1996), as well as the non-equilibrium concepts of Credible Message 

Rationalizability (Rabin, 1990) and the PCI criterion. The NITS criterion does 

not result in a clear prediction in G(B). All types in [0,60] are lowest types 

according to Chen et al.’s definition. The pooling equilibrium survives NITS 

relative to types in [22.5,105], whereas the separating equilibrium survives NITS 

relative to types in [0,30]. If we take 0t =  as the lowest type, for each B  only 

the separating equilibrium is NITS in our game. Hence, NITS would predict 

that the separating equilibrium is always stable regardless of .B  (In section 7, 

we introduce a game that has multiple equilibria that survive NITS even if the 

lowest type is fixed at 0t = .) Finally, some may argue that the most influential 

equilibrium (i.e. the equilibrium which induces the largest number of actions) is 

the most plausible equilibrium, aside of any stability considerations. In our 

game, this criterion also selects the separating equilibrium regardless of .B  
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In sum, existing criteria provide no or a partial answer to the question how 

stable equilibria in G(B) are for 120B > . 

3.2. ACDC in G(B) 

In our view, the idea of credible deviations is sound, but a rationalistic binary 

division between stable and unstable equilibria is inadequate to fully capture the 

intricate patterns of human behavior. Our conjecture is that two aspects will 

affect the behavioral stability of an equilibrium. The first concerns the mass of 

types that can credibly induce a deviation. The smaller this mass becomes, the 

less unstable an equilibrium will be, as it will be disturbed less frequently. The 

second aspect concerns how much the deviation profile differs from the equilib-

rium profile in terms of Sender payoffs. The smaller this difference becomes, the 

smaller both the Sender’s incentive to deviate and the perturbation to the 

equilibrium if she deviates will be. 

For instance, the separating equilibrium is not neologism proof if B = 121. 

However, we do not expect behavior in the game G(121) to be very different to 

behavior in G(120). After all, the induced deviations from equilibrium are very 

small: types in [60.5,121]  induce 61  instead of 60. Hence, Senders can at most 

earn 1  by deviating and, if they deviate, the resulting profile is very similar to 

the equilibrium profile. In contrast, in the pooling equilibrium the neologism 

deviations are substantial: types from 0 to 22.5 deviate from 45 to 0, and types 

from 53 to 121 deviate from 45 to 61. As a consequence, Senders have a large 

incentive to deviate to a profile which is very different from the equilibrium 

profile. Furthermore, the separating equilibrium seems more stable if 121B =  

than if, say, 210B = , when types in [70,210] can credibly induce 80 rather than 

60.  

In De Groot Ruiz et al. (2012a), we formalize these ideas in the concept of 

the Average Credible Deviation (ACD).18 The ACD intends to capture the 

                                     
18 There we also provided a more general and rigorous treatment of the concept. Here we 

restrict ourselves to the definitions needed in the current setting. 
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frequency and intensity of deviations. We need a couple of definitions. Let ( )a tσ  

be the equilibrium action induced by type t  in equilibrium ;σ  and let ( )a tσ  be 

the deviating action type t  induces if she plays a credible neologism.19 Let ( )a tσ  

( )a tσ=  if Sender type t  cannot play a credible neologism. Finally, we define 

( )SU t  and ( )SU t  as the lowest and highest payoff a Sender can get if both 

players play a rationalizable strategy. Now, for each Sender type t , we specify 

the size of the credible deviation from equilibrium, ( , )CD t σ . The ACD is the 

expected value of the credible deviations. We measure the size of a credible 

deviation by the Sender’s incentive to deviate relative to the largest (rational-

izable) incentive possible, so that it lies on a scale between 0 and 1 . The higher 

this incentive is, the higher the probability that a Sender will deviate and the 

larger the upheaval such a deviation can cause to an equilibrium. In particular, 

we define the credible deviation for type t  as 

 

(4)  
( , ( )) ( , ( ))

( , )  
( ) ( )

S S

S S

U t a t U t a t
CD t

U t U t

σ σ

σ
−

≡
−

 

 

whenever ( , ( )) ( ).S SU t a t U tσ >  If ( , ( )) ( ),S SU t a t U tσ = the Sender has no incentive 

to adhere to her equilibrium strategy, as she can do no worse by deviating, and 

we set ( , ) 1.CD t σ ≡ The ACD of equilibrium σ  is now defined as  

 

(5)  [ ]( ) ( , )tACD E CD tσ σ= . 

 

Observe that ( ) [0,1].ACD σ ∈  Using ACD, we can formulate the ACD-Criterion 

(ACDC). ACDC predicts that an equilibrium σ  is more stable than an equilib-

rium σ′  if ( ) ( ).ACD ACDσ σ ′<  Hence, ACDC allows us to select equilibria. In 

                                     
19 In G(B), ACDC gives equivalent results if we use weakly or ordinary credible announce-

ments are used instead of credible neologisms, as is the case in many games. For cases where the 
theories differ, we prefer (ordinary) credible announcements for discrete games and credible 
neologisms for continuous games. 
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particular, we call an equilibrium an ACDC equilibrium if there is no other 

equilibrium in the game with a lower ACD. We consider an ACDC equilibrium 

as the most plausible equilibrium, i.e. that which will predict best on average, 

rather than the equilibrium that will always be played all of the time. ACDC 

can select equilibria when neologism proofness is silent and reduces to the latter 

if neologism proof equilibria exist. 

The following proposition gives the results of ACDC for G(B). 

 

Proposition 3 The separating equilibrium Sσ  is the unique ACDC equilibri-

um. Furthermore, the ACD of the separating equilibrium is 0  for 120B =  (in 

which case the equilibrium is neologism proof) and strictly increasing in B.   

 

We can now see why G(B) provides a good testing ground for our ideas. It 

contains the features that make (continuous) cheap talk games difficult to refine. 

In contrast to Crawford & Sobel’s (1982) and Matthews’ (1989) cheap talk 

models, however, in our game a parameter value exists such that there are 

multiple equilibria, of which only one is neologism proof. Hence, our model 

allows us to test the relevance of credible deviations in a continuous setting. 

Furthermore, it allows us to test the idea that stability is not all-or-nothing. 

First, we can compare within a game two equilibria that are not neologism 

proof. Second, across games we can gradually increase the number of types that 

can credibly deviate in an equilibrium by increasing B.  

4. Experimental Design and Procedures 

We ran four treatments. In three treatments, we ran G(B) with an increasing 

boundary: G(120), G(130) and G(210). In addition we ran a robustness treat-

ment G3Actions to which we return in section 7. Table 2 summarizes the theo-

retical properties of the experimental treatments. For each treatment, we have 

six matching groups, each consisting of 10 subjects (5 Senders and 5 Receivers). 
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 TABLE 2
SUMMARY OF EXPERIMENTAL DESIGN

Treatment ( )RU δ  ( )SU δ  B Equilibria1 ACD2

G(120) 0 0 120 {45}, {0, 60}** 0 
G(130) 0 0 130 {45}, {0, 60}* 0.22 
G(210) 0 0 210 {45}, {0, 60}* 0.50 
Notes: In each game, t was uniformly distributed on the integers in [0,B]. 2

3( ) 60RU x x= −

and ( , ) 60SU x t t x= − − . 1An equilibrium has a *  if it is ACDC and ** if it is neologism proof 

as well. 2The ACD of the ACDC equilibrium.   
 

We used a standard procedure to recruit subjects from the student popula-

tion of the University of Amsterdam. The computerized experiment was run at 

the CREED lab. The software was written with z-Tree (Fischbacher, 2007). 

At the start of the experiment, subjects were randomly assigned to the role of 

Sender (‘chooser’ in the terminology of the experiment) or Receiver (‘proposer’). 

Subjects kept the same role throughout the whole experiment. Subjects read the 

role-specific instructions on paper at their own pace. (See Appendix C for the 

instructions.) After reading the instructions, subjects had to answer several 

questions testing their understanding of the instructions. Only when all subjects 

had answered all questions correctly, the experiment started. 

Subjects received a starting capital of 100 points. In addition, subjects earned 

points with their decisions in each of the 50 periods. (Subjects were informed 

that the experiment would last for approximately 50 periods.) At the end of the 

experiment, total point earnings were exchanged to euros at a rate of 1.5 euros 

for 100 points. In a session, we ran 2 matching groups simultaneously, each 

consisting of 5 Senders and 5 Receivers. In every period, each Sender was ran-

domly rematched with a Receiver in the own matching group. In total, 300 

subjects participated, who on average earned 28.30 euros in approximately 2 

hours, with a minimum of 10.10 euros and a maximum of 40.47 euros. Each 

subject only participated once.  

The procedure within a period was as follows. In each period, the Sender was 

informed of her own type. All subjects knew that each individual Sender’s type 
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in each period was an independent draw from the uniform distribution on [0, ].B

20 After having been informed of the own type, each Sender sent a message 

(‘suggestion’ in the terminology of the experiment) to the Receiver. The Receiv-

er was informed of the message but not of the Sender’s type. Then the Receiver 

chose an action (‘made a proposal’) that was either accepted or rejected by the 

Sender. Types, messages and actions were confined to integers in [0, ].B 21 Payoffs 

were then calculated according to the payoffs in equation (1). At the end of the 

period, Senders and Receivers were informed of the state of the world (the 

Sender type) and all the decisions made by the pair they were part of. In addi-

tion, each subject was shown her own payoff and how it was calculated. 

At any moment, subjects were provided with information about the social 

history in order to facilitate learning.22 At the bottom of the screen they saw 

how play had unfolded in the 15 most recent periods in their own matching 

group. For Senders the information was organized as follows. The left-hand side 

showed a table summarizing the choices of the pairs in the own matching group. 

Each row contained a pair’s suggestion (message), proposal, acceptance and 

preferred outcome (type of the Sender). The table was first sorted on suggestion, 

then on proposal, acceptance and finally on preferred outcome. The right-hand 

side showed the corresponding graph that listed the proposals as function of the 

suggestions. Figure 1 shows an example of the information that Senders re-

ceived. For Receivers the information was communicated in a slightly different 

way. In their table, each row listed a pair’s suggestion, preferred outcome, 

proposal and acceptance. The table was first sorted on message, then on pre-

ferred outcome, proposal and finally on acceptance. In their graph, preferred 

outcomes were shown as function of the suggestions. 

                                     
20 To maximize the comparability of the treatments, we drew three sets of types for one 

treatment and then rescaled these sets for each of the other treatments.  
21 We chose for this restricted message space instead of a free chat in order to be able to 

provide a history screen, facilitate learning and have data that can be interpreted clearly. Notice 
that the message space is rich enough for the communication of all credible neologisms in both 
equilibria, as in our game a neologism action uniquely identifies a credible neologism. 

22 Miller & Plott (1985) showed how a social history can help subjects understand the strate-
gic nature of signaling games. 
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conditional on being higher than the pooling action 45. In the G(120) treatment, 

where the separating equilibrium is neologism proof, the distribution of the high 

actions is similar and centered around 60. This is in agreement with the equilib-

rium prediction. We see a similar pattern in G(130), although the mean high 

action is now somewhat higher than the equilibrium action, as expected if high 

types send a neologism. In G(210), the elicited actions by high types are far off 

from equilibrium and much more dispersed.23  

The equilibrium analysis assumes that Senders do not leave money on the 

table, i.e., they are supposed to accept any action that gives them positive 

payoff. Overall, Senders accepted proposed actions that would give them a 

positive payoff in 96% of the cases. The overall acceptance rates are quite 

similar in the three treatments. In G(120), G130) and G(210) positive proposals 

are accepted in 94%, 96% and 99% of the cases, respectively. Still, the difference 

in acceptance rate is significantly higher in G(210) than in either G(120) 

(p=0.00) or G(130) (p=0.02). The difference in acceptance rate between G(120) 

and G(130) is insignificant (p=0.17). Possibly Senders are somewhat more 

inclined to accept positive proposals in G(210) because they receive fewer of 

them (93%, 93% and 66% of the offers were profitable to the Sender in G(120), 

G130) and G(210), respectively). 

Table 3 presents the actual acceptance frequencies as function of the Sender’s 

payoff (in the rows) and the Sender’s share in the total payoff (in the columns) 

aggregated across the three treatments. It is remarkable that Senders almost 

always accept ‘decent’ proposals that give them at least 10, independent of their 

share in the total payoff. As a result, the equilibrium assumption about Senders’ 

acceptance behavior is by and large supported in the data.24 

                                     
23 The average high actions in G(120), G(130) and G(210) equal 57.8, 66.3, and 93.0, respec-

tively. The differences in high actions between the treatments are all significant at p=0.01. Only 
the high actions of G(130) and G(210) are significantly different from the equilibrium action of 
60 (p=0.05 and p=0.03, respectively). 

24 Notice that the picture about acceptance rates differs from results in standard ultimatum 
games, where subjects tend to reject proposed actions more often (Oosterbeek, Sloof & Van der 
Kuilen, 2004). A crucial difference between our bargaining game and the ultimatum game is that 
in our game the Receiver is not informed of the type of the Sender so that it remains unclear 
whether an unfavorable proposal is made intentionally. 
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TABLE 3 
ACCEPTANCE RATES 

  Share Sender 
Payoff   

Sender Total 0-10% 10-20% 20-30% 30-40% 40-50% >50% 

<0 0% 211 -  - - - -  - 
=0 50%    6 50%   6 -  - - -  - 
0-10 70% 112 40% 30 73% 49 90% 29 100%   2 100%   1 100%    1 
10-20 92% 122 -  100%  2 87% 69 97% 36 100%   8 100%    7 
20-30 99% 135 -  -  100% 13 100% 48 98% 59 100%   15 
30-40 100% 182 -  -  -  100% 28 100% 76 100%   78 
40-50 100% 250 -  -  -  -  100% 89 99% 161 
50-60 100% 332 -  -  - - 100% 76 100% 256 

Total when 
payoff>0 40% 36 75% 51 89% 111 99% 114 100% 309 100% 518 

Notes: the cells show the acceptance rates (in percentages) as a function of the surplus pay-
off the Sender would receive if she would accept the proposed action (in the rows) and her 
share of the surplus (in the columns, cases where the surplus was not positive were dropped). 
The number of observations pertaining to the cell is listed in italics. The Sender’s share is 

defined as 
+

× ( , )

( , ) ( )
100% .

S

S R

U a t

U a t U a
 

 

 Table 4 reports how often actual play was close to equilibrium. We say that 

an outcome is consistent with equilibrium (‘correctly predicted’) if the actual 

action lies within a bandwidth of 7 and if the acceptance decision was correctly 

predicted. We employ a narrow bandwidth to avoid that observations are 

consistent with both the pooling and the separating equilibrium. The absolute 

numbers in the table are obviously dependent on the chosen bandwidth. Here, 

we are interested in the relative magnitudes of the numbers, for which the exact 

level of the bandwidth turns out not to matter. In addition, we also look at the 

average (absolute) prediction error of the equilibria, reported in Figure 3. Let 

( )a tσ  be the equilibrium action of the Receiver given type t  and  the 

observed action for observation i. The average prediction error (for a set of n 

observations I) is then 1
ˆ| ( ) ( ) |i i i

i I

a t a t
n

σ

∈

−∑ . The percentage of outcomes that are 

correctly predicted is an intuitive measure of predictive success, whereas the 

average prediction error a parameter-free and precise measure. The results are 

qualitatively identical (and equally significant) for both measures of predictive 

success. 

ˆ ( )i ia t
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TABLE 4
FRACTION OF OUTCOMES CORRECTLY PREDICTED BY EQUILIBRIA 
 All observations Observations with t < 120 

Treatment Equilibria Dif Equilibria Dif
Pooling Separating Pooling Separating  

G(120) .25 .46 .21* .25 .46 .21*
G(130) .14 .34 .20** .14 .36 .22**
G(210) .08 .11 .03 .11 .19 .08 

Dif 120-130 .11** .12 .11** .10  
Dif 120-210 .17*** .35*** .14** .27***  
Dif 130-210 .06** .23*** .03 .16**  

Notes: The table shows per treatment the mean fraction of correctly predicted outcomes by 
the equilibrium. We classified a prediction as correct if both (i) the distance between the 
predicted and observed action was not larger than 10 and (ii) the acceptance decision was 
correctly predicted. We used the data of the last 15 periods. ‘Dif’ denotes ‘difference.’ 

 

We first deal with the question whether credible deviations (and hence neolo-

gism proofness and announcement proofness) have a bite. For this question, two 

comparisons are relevant. First, within treatment G(120) the separating equilib-

rium is neologism proof while the pooling equilibrium is not. In accordance with 

neologism proofness, more outcomes are consistent with the separating equilib-

rium than with the pooling equilibrium. The difference is both substantial and 

weakly significant. Second, when we move from treatment G(120) to G(210), the 

separating equilibrium ceases to be neologism proof. While the separating 

equilibrium does a good job in G(120), it organizes only a bleak minority of the 

data in G(210). This conclusion is valid when we take the data for all types as 

well as when we condition on the outcomes with types less than 120. So also 

when we compare the behavioral stability of the same equilibrium across treat-

ments, we find support for neologism proofness. 

To investigate whether credible deviations matter gradually across games in 

the manner ACDC predicts, we compare G(120), G(130) and G(210). In G(130), 

the separating equilibrium is no longer neologism proof but the ACD measure 

remains rather small relative to G(210). So if ACDC makes sense, the results of 

G(130) should be closer to G(120) than to G(210). Table 4 confirms that this is 

indeed the case. Like in G(120), the separating equilibrium is much more suc-
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cessful than the pooling equilibrium. The separating equilibrium predicts behav-

ior a bit less in G(130) than in G(120), but the difference is not significant.25 In 

contrast, the difference between G(130) and G(210) is much larger. In G(210), 

significantly fewer cases are consistent with the separating equilibrium than in 

G(130). So even though the separating equilibrium is not neologism proof in 

either treatment, it traces the data much better in G(130) than in G(210), as 

predicted by ACDC. Observe that in G(210), ACDC does not only predict that 

behavior is closer to the separating equilibrium than to the pooling equilibrium, 

but also that it will be rather unstable due to its high ACD. 

Regarding equilibrium selection, observe that in all treatments the ACDC 

(separating) equilibrium predicts better than the non-ACDC (pooling) equilibri-

um. This is also the case for G(130) and G(210), where neither equilibrium is 

neologism proof. Still, in G(210), the difference between the separating and the 

pooling equilibrium is much smaller than in the other treatments, in line with 

ACDC. 

 

TABLE 5
INFORMATION TRANSMISSION

 Correlation 
type-actions 

Correlation 
type-messages 

Correlation 
message-actions 

 ACDC   Data   Data   Data 
G(120) .82 .78 (.12) .72 .82 
G(130) .68 .77 (.25) .78 .82 
G(210) .53 .69 (.25) .75 .84 
Δ G(130)-G(120)  -.01 (.75) .06 (.34)    .01 (.63) 
Δ G(210)-G(120)  -.09 (.26) .03 (.63)    .02 (.87) 
Δ G(210)-G(130)  -.08 (.26) -.04 (1.00)    .01 (.52) 

Notes: The table shows the correlations between types, actions and messages. For the 
type-action correlations, also the ACDC equilibrium is provided in terms of what the correla-
tion would be if all players adhered to the equilibrium in the actual drawings. The reported 
data is the median of the correlation coefficients calculated per datapoint in the last 15 
periods. We compared the ACDC equilibrium type-action correlation with the actual type-
action correlation. In addition, we compared the differences for all correlations between 
treatments. P-values are provided between brackets. 

 

                                     
25 Since this result also holds when the analysis is restricted to observations with 120,t ≤  

this is not a measurement artifact due to a change in the interval of measurement. 
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Information transmission, as measured by the type-action correlations, is 

close to that predicted by the ACDC equilibrium (see Table 5). We observe 

slight overcommunication in G(130) and G(210) with respect to the ACDC 

equilibrium, but it is not statistically significant. Our results are thus in between 

those of Agranov & Schotter (2012), who observe the ‘right’ amount of infor-

mation transmission in a coordination game, and those of Cai & Wang (2006), 

who report overcommunication in a Crawford-Sobel setting. In line with equilib-

rium, there is more information transmission in G(120) and G(130) than 

G(210), although the differences are not significant. Contrary to equilibrium, 

information transmission in G(120) and G(130) is very similar. Finally, the type-

message and message-action correlations are very similar across treatments.  

The power of ACDC is further illustrated in Figure 3. This figure lists the 

average prediction error of a particular equilibrium and treatment as a function 

of its ACD. In agreement with ACDC, the higher the ACD measure, the larger 

the average prediction error tends to be. Notice in particular that the average 

prediction error of the separating equilibrium only rises slightly when it just 

ceases to be neologism proof (relative to the differences with G(210)). 

 
Figure 3 

The figure plots for each equilibrium in each treatment its theoretical ACD against its empir-
ical prediction error. We report the median (over matching groups) of the average prediction 
error. We used the data of the last 15 periods. 
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6. Dynamics 

In this section, we look at the dynamics. In subsection 6.1, we describe the 

most important dynamic features of the data. In 6.2, we observe that an elemen-

tary best response model is not predictive. In 6.3, we introduce the neologism 

dynamic, which is able to explain important parts of the data. 

6.1. Dynamics in Experiment  

In this section we deal with the question how subjects adapted their behavior 

during the experiment. Figure 4 plots messages conditional on Sender type (left-

hand side), actions conditional on message received (middle) and actions condi-

tional on Sender type (right-hand side). We present plots for the first 15 and 

last 15 periods in each treatment. The type-message plots show that Senders’ 

messages are higher than their types and that Senders learn gradually to exag-

gerate more. In the last 15 periods of each treatment, Senders overstate the true 

state more than in the first 15 periods. Thus, there is ‘language inflation.’ 

Receivers’ action-message plots provide the mirror image of Senders’ type-

message plots. That is, in the first part of the experiment Receivers tend to 

propose actions somewhat below the minimum acceptable offer if the message 

were taken as a true report of the type. In the final part of the experiment, 

Receivers have learned to subtract larger amounts from the messages received.  

The data suggest that Receivers understood that they had to take the mes-

sages with a grain of salt. If a receiver trusted that the message revealed the 

Sender’s true type, he should choose an action of 60 below the message (or 

slightly higher, if he feared being rejected). Figure 4 shows that there are some 

such observations in treatments G(120) and G(130) where the highest messages 

frequently triggered an action of 60. It is impossible to tell if these observations 

are naive or rational in the sense of being consistent with the high equilibrium 

action. In this respect treatment G(210) is much more informative. Here only 

very few of the high messages of 210 triggered an action of 150. Instead such  
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The type-action plots on the right hand side illustrate how close the actually 

triggered actions are to the equilibrium predictions. For treatments G(130) and 

G(120), the data are closer to the separating equilibrium in the final part of the 

experiment than in the first part of the experiment. A similar trend is not 

observed in G(210). To the contrary, in this treatment the data remain far from 

equilibrium throughout the whole experiment. 

We now turn to the questions how easily subjects reached the separating 

equilibrium in the different treatments and how likely it was that they stayed 

there. Table 6 presents the relevant statistics separately for the first part (first 

15 periods) and the final part (last 15 periods) of the experiment. In the first 

part of the experiment, subjects more easily reached the separating equilibrium 

from a state of disequilibrium in treatments G(120) and G(130) than in G(210). 

When subjects were approximately playing according to the separating equilib-

rium in the previous period, they were much more likely to stay there in treat-

ments G(120) and G(130) than in treatment G(210). The lower part of the table 

shows that the differences between treatment G(210) and the other treatments 

became even more pronounced in the final part of the experiment. In particular, 

in G(120) and G(130) the separating equilibrium attracts more outcomes in the 

final part than in the first part (and in G(120) significantly so). In contrast, in 

G(210) the separating equilibrium attracts less outcomes in the final part; in 

fact, it hardly attracts any outcomes in the final part. 

Summarizing, the two main features of the dynamics in the data are (i) there 

is language-inflation and (ii) the separating equilibrium attracts behavior over 

time in G(120) and to a slightly lesser extent in G(130), but not at all in 

G(210). 
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 TABLE 6
FRACTION OF MATCHING GROUP OBSERVATIONS IN SEPARATING EQUILIBRIUM 

CONDITIONAL ON PREVIOUS STATE 
 Treatment Previous state 

no equilibrium 
Previous state  
equilibrium 

First Part 
(Periods 1-15) 

G(120) .46 .60 
G(130) .41 .51 
G(210) .10 .09 

Dif 120-130 .05 .09 
Dif 120-210 .36*** .51*** 
Dif 130-210 .31*** .42*** 

Final Part 
(Periods 36-50) 

G(120) .64 .74 
G(130) .50 .72 
G(210) .03 .00 

Dif 120-130 .14 .02 
Dif 120-210 .60*** .74*** 
Dif 130-210 .46*** .72** 

Difference between 
First and Final Part 

G(120) .18** .14* 
G(130) .09 .21 
G(210) .07 -.09 

Notes: A matching group observation in a given period is classified as consistent with the 
separating equilibrium prediction if and only if the acceptance decision was predicted correctly 
and equilibrium action – observed action  ≤ 10 for at least 3 of the 5 pairs in the matching 
group; the middle column displays the fraction of equilibrium observations given that the 
previous observation was not in equilibrium; the right column displays the fraction of equilibri-
um observations given that the previous observation was in equilibrium. 
 

6.2. Best Response Dynamic 

A first avenue to look to explain the data is a simple best response model. 

This, however, cannot distinguish between the two equilibria or the effects of B 

using natural initial conditions. (We get equivalent results for a level-k analysis.) 

To see why, consider the simplest best response dynamic, in which Sender and 

Receiver best respond to the other’s strategy in the previous period. We again 

assume that Senders induce the action they prefer most. If Senders are indiffer-

ent, they randomize between their optimal actions. The outcome of the best 

response model depends very much on the initial conditions and we will look at 

the two natural starting points: a babbling strategy and a naive strategy. In the 

babbling strategy no information is transmitted: Senders randomize in the 

| |
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interval [0,B] and Receivers take the optimal prior action 45 regardless of the 

message (this corresponds to a random level-0 in a level-k analysis). In the naive 

strategy all information is transmitted: Senders report their type and this is 

believed by Receivers (this corresponds to a truthful level-0 in a level-k analy-

sis). It is readily verified that if players babble in the first period, then the 

dynamic forever stays in this pooling equilibrium, regardless of the boundary. 

Similarly, if players use a naive strategy in the first periods, it can be shown 

that the dynamic converges to the separating equilibrium, regardless of the 

boundary.  

6.3. Neologism Dynamic 

We introduce a small twist to create a ‘neologism dynamic’: Sender types who 

can send a credible neologism with respect to the Receiver’s strategy in the 

previous round will do so and such a credible neologism will be believed. In all 

other respects, the dynamic is the same as above. If we analyze this dynamic for 

our experimental treatments (G(120), G(130), G(210)), we get entirely different 

results. First, the outcome becomes less dependent on the initial conditions. 

Second, the dynamic converges to behavior that resembles the separating equi-

librium when the ACD is small and only when it is small. 26 Finally, in the 

attractor of G(130) and G(210), types close 30 do not separate neatly as they 

would in the separating equilibrium. (A level-k with neologisms analysis yields 

qualitatively the same result as the best response dynamic.)  

In G(120), the dynamic converges to a steady state that corresponds to the 

separating equilibrium for both random and naive first-period strategies. If 

players have a naive strategy in period 1, then Senders realize in period 2 that 

they should send their type plus 60, leading to an inflation of language. Types 

higher than 60 pool at the highest message of 120. In period 3, Receivers recog-

nize the language inflation and propose 0 to any message smaller than 120. In 

addition, they propose 60 if they receive 120. In period 4, the players are al-
                                     
26 Although (in line with ACDC) the dynamic converges in all cases to behavior that is closer 

to the separating than to the pooling equilibrium. 
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ready in the separating equilibrium. Note that as long as the Receiver proposes 

 and an action higher or equal to 60, no neologism can be played. Suppose 

players start with a babbling strategy. Then in period 2, Senders in  

send a low neologism of  and Senders in  send a high neologism of 

60. In period 3, the Receiver realizes that types who do not send a neologism 

accept , and propose  to them and 60 to others. As a result, in period 4 

equilibrium is reached. 

In G(130), the dynamic starts out (for both initial conditions) similar to 

G(120) but does not converge to the separating equilibrium. Instead, the dy-

namic converges to a four-cycle that, nonetheless, stays pretty close to the 

separating equilibrium. In G(210), the dynamic converges to a (non-steady) 

state, where the Receiver proposes actions 0, 30 and 90, and the Senders in 

 send a neologism of 90. Hence, the dynamic does not come close to the 

separating equilibrium. (Although it comes closer to the separating than to the 

pooling equilibrium.) We summarize the findings in Figure 5. We have held the 

discussion of the neologism dynamic informal here. For details and proofs, we 

refer to Appendix B. The calculations are straightforward, but tedious. 

Observe that the results of the neologism dynamic are in line with the two 

main dynamic features of the experiment: (i) there is language-inflation and (ii) 

the separating equilibrium attracts behavior in G(120) and to a slightly lesser 

extent in G(130), but not at all in G(210) (see Figure 4.) Furthermore, the 

observation that the prediction error of the separating equilibrium decreases 

over time in G(120) and G(130), but not in G(210) is in line with the neologism 

dynamic. Finally, note that in G(130) and G(210) types close to 30 (the indiffer-

ence type in the separating equilibrium) do not separate neatly into low and 

high types. Hence, the dynamic predicts a messy separation close to the equilib-

rium indifference type for these treatments, which we observe in the data. In 

addition, it supports the assumption of ACDC that in an equilibrium with a 

small ACD, behavior will not be entirely in equilibrium but can be close to it 

(and that it can deviate substantially from equilibrium if the ACD is large). 

0

[0,22.5)
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0 0
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7. A further test of ACDC 

The previous experimental analysis shows that ACDC provides a better pre-

diction of experimental behavior than neologism proofness. It makes the same 

prediction as neologism proofness when the latter criterium selects a unique 

equilibrium that organizes the data well (in G(120)). In addition, it makes 

predictions that are supported by the data when neologism proofness remains 

silent (in G(130) and G(210)).  In this section we provide a further test of 

ACDC. In particular, in the treatments discussed do far we cannot discriminate 

between ACDC on the one hand and NITS and influentiality on the other in 

terms of selection properties. For this reason, we study G3Actions.28 G3Actions 

is the same as G(120), except that the Sender’s disagreement point payoff is 

raised from 0 to 30: δ δ= =( ) 0,  ( , ) 30.R SU U t  In G3Actions, the maximum 

equilibrium-size is 3 and continua of equilibria exist: 

 

Proposition 4 G3Actions has a size-1 equilibrium { }1 30 .a =  In addition, it 

has a set of size-2 respectively size-3 equilibria characterized by 1 2 1, 60},{a a a= +  

with 1 [0,30]a ∈  and 1 2 3 20, , 6 }{ 0a a a a= = +  with 2 (0,30]a ∈ . The ACDC equi-

librium, which is also neologism proof, is 0, ,{ 30 90}.  

 

Observe that all size-3 equilibria survive the influentiality criterion. The size-2 

equilibrium  and all size-3 equilibria survive NITS (relative to lowest type 

t = 0): the lowest type has no incentive to separate, because it obtains its 

highest possible utility in equilibrium. 

                                     
28In an extended version of this paper, we report the result of an additional robustness check. 

One possible experimental risk of manipulating B in treatments G(120), G(130) and G(210) is 
that our results could be influenced (merely) by increasing the action and type space. In 
particular, one may be worried that confused subjects simply choose something close to the 
midpoint of the message or action space. Therefore, we ran ‘T4’, which is strategically equivalent 
to the game G(240), but where we do not shift the boundary (we keep it at 120), but change the 
disagreement point payoff instead. In T4, the midpoint is 60 as in G(120), but in T4 the average 
high action is 49.  

{0,60}
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As Figure 6 shows, in G3Actions, behavior roughly follows the predictions of 

the ACDC equilibrium, although there is excess separation. Primarily, types 

close to the boundaries between the intervals of the ACDC equilibrium tend to 

elicit different actions than in equilibrium. 

 

FIGURE 6 
This figure shows the type action bubble plot for G3Actions. The bubble plots are clus-

tered on a grid of 10. The solid line represents the ACDC equilibrium outcome. 

 

The ACDC equilibrium predicts significantly better than the pooling equilib-

rium. (The prediction error of the separating equilibrium (11.4) is significantly 

smaller at the 5% level than that of the pooling equilibrium (34.3).) Figure 7 

shows, furthermore, that in G3Actions the ACDC equilibrium outperforms the 

other equilibria as well. The left hand side displays the theoretical ACD for the 

size-2 and size-3 equilibria. The equilibrium that is characterized by the actions 

(0,30,90) minimizes the ACD and is thus the ACDC equilibrium. The right hand 

side of the figure shows that for this equilibrium the average prediction error of 

the action is minimized. In addition, the rank of an equilibrium’s prediction 

error (right panel in Figure 7) roughly follows the rank an equilibrium’s ACD 

(left panel in Figure 7). (The two plots have a different curvature though.) This 

is also interesting since the ACDC equilibrium is neologism proof. Equilibria 
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Appendix A: Proofs of Propositions 

Proofs of Propositions 1, 4 and 5 

G(B), T4 (see footnote 28), and G3Actions belong to the following game 

( , )R Sd dΓ , which is the uniform linear case of the veto threats model we study in 

De Groot Ruiz et al. (2012b). ( , )R Sd dΓ  proceeds as game G(B). However, the 

Sender’s type t is drawn from the interval [0,1]. The Receiver’s and Sender’s 

payoff on the real line are given by ( )RU x x=−  and ( , ) | | .SU x t x t= − −  The 

disagreement point payoff is ( )R RU dδ = −  and ( )S SU dδ =−  with , 0.R Sd d >  In 

De Groot Ruiz et al.  (2012b), we show that the equilibria of ( , )R Sd dΓ  can be 

characterized as follows:  

 

Lemma 1 Let max{0,min{ 2 ,1 }}.R S Sx d d d= − −  Any equilibrium of the game 

is a partition equilibrium that can be described by a natural number {1,..., }n n∈

and a set of equilibrium actions 1{ ,..., }na a , such that 

(i) 1
1 2max{0,min{1 , , ( )}}S S R Sa d d d d= − −  if 1n =  

(ii) 1 2min{ ,max{0, 2 }}S Sa d a d= −  if 2n ≥   

(iii) 2
2 3min{ ( ),2 ,1 }R S S Sa d d d d= − −  if 2n =  and 1 0a =  

(iv) 1 2 S
k ka a d−= +  if 1ka −  exists and 1 0ka − >  

(v) na x≤  if 4R Sd d≥  

The maximum size n  is equal to 1 if 1.Sd ≥ If 1,Sd <  max 2,
2 S

Rd
n

d

⎧ ⎫⎡ ⎤⎪ ⎪⎪ ⎪⎢ ⎥= ⎨ ⎬⎢ ⎥⎪ ⎪⎪ ⎢ ⎥⎪⎩ ⎭
if 

1R Sd d≤ +  and 
3 1

max 2,
2 2 Sn

d

⎧ ⎫⎡ ⎤⎪ ⎪⎪ ⎪⎢ ⎥= +⎨ ⎬⎪ ⎪⎢ ⎥⎢ ⎥⎪ ⎪⎩ ⎭
otherwise, where  . ⎡ ⎤⎢ ⎥  is the ceiling 

function. 
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From Proposition 5 in (the Online Appendix of) De Groot Ruiz et al. (2012a), it 

follows that 

 

Lemma 2 The unique ACDC equilibrium of ( , )R Sd dΓ  with respect to credible 

neologisms is the maximum size equilibrium with the highest equilibrium action. 

 

G(B) corresponds to ( , )R Sd dΓ  with 5 120
4

R
Bd =  and 1201

2 .S
Bd =  T4 corresponds to 

5 1
8 4( , )Γ  and G3Actions to 5 1

4 4( , ).Γ  Propositions 1, 4 and 5 are direct corollaries 

of Lemmas 1 and 2. 

Proofs of Propositions 2 and 3 

Proof of Proposition 2 Let ( )a t  characterize the equilibrium outcome. In 

our game, ,[ , ]a τ τ  is a credible neologism iff ( , ) ( ( ), )S SU a t U a t t<  [ , ]t τ τ∀ ∉ , 

( , ) ( ( ), ) ( , )S SU a t U a t t t τ τ> ∀ ∈  and [ , ]a a τ τ∗= . Hence 1a a<  implies 0τ =  and 

na a>  implies τ =  B. 

First, let us look at pooling equilibrium .Pσ  Consider a low credible neolo-

gism 45.La a< =  Now, 0.Lτ =  Furthermore, 
1
( 45) 60.

2
L Laτ = + <  Hence, 

[0, ]La a τ∗=  0=  and Lτ  must be 22.5. Next, consider a high credible neologism 

45,Ha >  Hτ =  B  and 
1
( 45).

2
H Haτ = +  Solving 

1
[ ( 45), ]
2

Ha a B∗ +  Ha=  yields 

min{Ha = 60,75} 45.B − >  Consequently, 
15

min{ ,60}.
2

H B
τ

−
=  

Second, let us look at the separating equilibrium .Sσ  There can be no credi-

ble equilibrium 1a a<  as 1 0.a =  Consider a credible neologism 60.a >  Now, 

τ =  B  and 
1
( 60).

2
dτ = +  Solving 

1
[ ( 60), ]
2

a d B∗ + a=  yields a =  

min{ 60,80}.B −  Hence, min{ ,70}.
2
B

τ =  If 120,B =  then 60a =  and it is no 

neologism. If 120,B >  it is a neologism. Finally, consider some neologism with 
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1 20 60.a a a= < < =  Since 60,a <  it must be that 60.τ <  However, if 60,τ <  

then [ , ] 0.a τ τ∗ =  Hence a  cannot be a neologism. Q.E.D. 

 

Proof of Proposition 3 First, we show that ( ) ( ).P SACD ACDσ σ>  Let Hτ  

be the lowest deviating type of the high neologism in the pooling equilibrium Pσ  

and τ  the lowest deviating type of the neologism in the separating equilibrium 

.Sσ  Due to the low credible neologism, ( , ) ( , ) 0P SCD t CD tσ σ> =  for 
45

[0, ).
2

t ∈  

For 
45

[ , ),
2

Ht τ∈  ( , ) ( , ) 0.P SCD t CD tσ σ= =  Since the distance between the 

neologism action and the equilibrium action is larger in the pooling equilibrium 

than in the separating equilibrium and ,Hτ τ<  it must hold that 

( , ) ( , )P SCD t CD tσ σ>  for ( ,120].Ht τ∈  Furthermore, ( , ) ( , ) 1P SCD t CD tσ σ= =  

for [120, ].t B∈  Hence, [ ( , )] [ ( , )].P S
t tE CD t E CD tσ σ>  

For the second result, observe that the set of rationalizable actions for the 

Receiver is [0, 60]B −  and that the Sender can always guarantee herself a payoff 

of 0 by rejecting the proposed action. This means that 

( ) (min{ , 60}, )S SU t U t B t= −  and ( ) max{0,min{ (0, ),S SU t U t=  ( 60, )}}.SU B t−  

Using Proposition 1 and Proposition 2, we get for the ACD of the separating 

equilibrium 
120

min{70, /2}

{(60 (min{80, 60} ) (60 | 60 |)}1
( )

( ) ( )
S

S S
B

t B t
ACD dt

B U t U t
σ

− − − − − −
=

−∫
120

.
B

B
−

+  It is readily verified that this function is zero for 120B =  and 

strictly increasing in B for 120.B ≥  Q.E.D. 
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Appendix B (Online): Neologism Dynamic 

We first describe the standard, simple, best response dynamic. In each period 

all Sender types and the Receiver choose a strategy. We assume that the Sender 

in the acceptance stage accepts all actions that yield her nonnegative payoff: 

( , ) 1a tν =  if ( , ) 0SU a t ≥  and ( , ) 0a tν =  otherwise. The strategy of the Sender 

in period r  is then given by :r T Mμ → Δ  and that of the Receiver by 

: .r M Aα →  Let ( )rm t  denote the message Sender type t  sends (which may be 

a random variable) and ( )ra m  denote the Receiver’s action after receiving 

message m . Both players best respond to the strategy of the other player in the 

previous round. First, the support of ( )r tμ  is equal to 1arg max ( ( ), ).S
m M rU a m t∈ −

In particular, we assume the Sender randomizes uniformly over the set of best 

responses. Second, ( ) arg max ( , ) [ ( , ) | ( )],R r
r a A ta m U a t E a t mν β∈=  where ( )r mβ  is 

derived from 1rμ − by Bayes rule whenever possible.29 If rβ  cannot be derived 

from 1rμ − , then ( )r r mβ β=  for some randomly chosen m ∈ t T∈∪ supp 1( ).r tμ −  

The neologism dynamic differs from the best response dynamic on one crucial 

aspect: Senders can send credible neologisms, which will be believed. We define 

,a N  as a credible neologism with respect to Receiver strategy rα  if (i) 

( , ) arg max ( ( ), )· ( ( ), )S S
m M r rU a t U a m t a m tν∈>  for all ,t N∈  (ii) 

(( , ) arg max ( ), )· ( ( ), )S S
m M r rU a t U a m t a m tν∈≤  for all t N∉  and (iii) 

arg max ( , ) [ ( , ) | ].R
a A ta U a t E a t t Nν∈= ∈ 30 

                                     
29 We assume (for ease of exposition) that there is one unique best response for the Receiver, 

which is generically the case in our game. In case there are more optimal actions one could let 
the Receiver randomize. 

30 We need to point out the following subtlety. If a credible neologism was used in the previ-
ous period, it becomes just a message (which may have acquired a new ‘meaning’). If the same 
credible neologism has to be made in the following period, it cannot be the same literal message, 
as then it would not be a neologism. Hence, the Sender can add for instance Really! or Really, 
Really! etc. to make it a neologism and distinguish it from the old message. 
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Now, in the neologism dynamic all Senders that can send a credible neologism 

in round r  with respect to 1,rα −  will do so and such credible neologisms will be 

believed by the Receivers in round r. In all other cases, the dynamic is identical 

to a best response dynamic. We call the neologism dynamic ( , ).r rf aμ  

This best response dynamic bears similarities to a level-k analysis. The differ-

ence is that in level-k, in each iteration just one player (Sender or Receiver) 

changes her strategy. In the best response dynamic, both players change their 

strategy each period. Still, the best response dynamic converges in all cases 

below to very similar outcomes as the outcomes a level-k analysis would con-

verge to. 

Before analyzing the dynamic, we characterize the best responses and neolo-

gisms. The Sender’s best response is simply to induce the action closest to her 

type. We call the Receiver’s best response [ , ]a t t∗  if Sender types are uniformly 

distributed in the interval [ , ].t t  [ , ]a t t∗  is single-valued and equal to 

1
min{ 60,45 }.

2
t t− +  Let max { ( )}m M ra a m∈=  be the highest action of a Re-

ceiver’s strategy. Then, for 120B =  and 130,B =  there exists a high credible 

neologism with respect to ra  if and only if 60.a B< −  In particular, it is equal 

to 60
60,( ,130]

2
B a

B
− +

−  if 3( 120) 60B a B− ≤ < −  and 

2
60 / 3,( (45 ),130]

3
a a+ +  if 3( 120).a B< −  For 210,B =  there exists a high 

credible neologism if and only if 90,a <  and in this case it is equal to 

1 2
60 ,( (45 ),130] .

3 3
a a+ +  

We restrict our analysis to two natural initial strategy profiles: babbling 

(where no information is transmitted) and naive (where all possible information 

is transmitted). 
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For G(120), G(130) and G(210), we (i) give the attractor,31 (ii) show that 

both the babbling and naive initial profiles lie in its basis of attraction and (iii) 

calculate the average prediction error of the pooling and separating equilibria for 

the attractor.   

G(120) 

For 120,B =  it is easy to check that the equilibrium profile is a steady state 

of the neologism dynamic: 1( )rm t m=  for [0,30]t ∈  and 2 1( )rm t m m= ≠  for 

[30,120]t ∈ , and 1( ) 0ra m =  and 2( ) 60.ra m =  It is a steady state of the best 

response dynamic and no neologism relative to ra  exists. 

 

If we start with a babbling profile in period 1, the neologism dynamic pro-

ceeds as follows: 

 

Strategy Sender period 1 (Babbling) Strategy Receiver period 1 (Babbling) 

1( ) [0,120]m t U∼  if [0,120]t ∈  1( ) 45a m = for all [0,120]m ∈  
where all Senders randomize uniformly over the interval [1,120]. 

 

Strategy Sender period 2  (Babbling)   Strategy Receiver period 2  (Babbling) 
1

2( )m t n=  if [0,45 / 2)t ∈    2( ) 0a m =  if 1m n=  

2( ) [0,120]m t U∼  if 1
60 10 15t< = <    2( ) 45a m =  if [0,120]m ∈  

2
2( )m t n=  if (105 / 2,120]t ∈    2( ) 60a m =  if = 2m n  

where 1 0,[0, 45 / 2)n =  and 2 60,[105 / 2,120)n =  

 

Strategy Sender period 3  (Babbling)   Strategy Receiver period 3  (Babbling) 
1

3( )m t n=  if [0,45 / 2)t ∈   
 
285

40.7
7

 if 1[0,120] { }m n∈ ∪  

3( ) [0,120]m t U∼  if [45 / 2,105 / 2)t ∈    3( ) 60a m =  if 2m n=  
2

3( )m t n=  if [105 / 2,120]t ∈ . 

 

                                     
31 An attractor is roughly speaking a set in the phase-space the neighborhood of which the 

dynamic evolves to after sufficient time. This can be, for instance, a steady state or a higher n-
cycle. 
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Strategy Sender period 4  (Babbling)   Strategy Receiver period 4  (Babbling) 
1

4( ) [0,120] { }m t U n∼ ∪  if [0,30)t ∈   4( ) 0a m =  if 1[0,120] { }m n∈ ∪  
2

4( )m t n=  if [30,120]t ∈    4( ) 60a m =  if 2m n=  

 

Hence, from period 4, the dynamic is and stays in the separating equilibrium. 

If we start with a naive profile in period 1, the neologism dynamic proceeds 

as follows: 

 

Strategy Sender period 1  (Naive)   Strategy Receiver period 1 (Naive) 

1( )m t t=  if [0,120]t ∈  1( ) 0a m =  if [0,60]m ∈  
 1( ) 60a m m= −  if [60,120]m ∈  
where all Senders randomize uniformly over the interval [1,120] 

 

Strategy Sender period 2  (Naive)   Strategy Receiver period 2 (Naive) 

2( ) [0,60]m t U∼  if 0t =    2( ) 0a m =  for all [0,60]m ∈  

2( ) 60m t t= +  if (0,60)t ∈    2( ) 60a m m= −  for all [60,120]m ∈  

2( ) 120m t =  if [60,120]t ∈   

 

[Strategy Sender period 3  (Naive)   Strategy Receiver period 3  (Naive) 

3( ) [0,60]m t U∼  if 0t =    3( ) 0a m =  if [0,120)m ∈  

3( ) 60m t t= +  if [0,60)t ∈    3( ) 60a m =  if 120m =  

3( ) 120m t =  if [60,120]t ∈   

 

Strategy Sender period 4  (Naive)   Strategy Receiver period 4 (Naive) 

4( ) [0,120)m t U∼  if [0,30)t ∈    4( ) 0a m =  if [0,120)m ∈  

4( ) 120m t =  if [30,120]t ∈    4( ) 60a m =  if 120m =  

 

Hence, from period 4, the dynamic is and stays in the separating equilibrium. 

Now we turn to the prediction error. Let the equilibrium profile be eσ  and 

the attracting profile aσ . Then, the average (or expected) prediction error of an 

equilibrium for the attracting profile is ( ( )) ( ( ))e e a aE a m t a m t⎡ ⎤−⎢ ⎥⎣ ⎦ . The average 

prediction error of the separating equilibrium is obviously 0. The prediction 

error of the pooling equilibrium is 
30 120

0 30

1
45 0 45 60 45 / 2

120
dt dt

⎛ ⎞⎟⎜ − + − =⎟⎜ ⎟⎝ ⎠∫ ∫ . 
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G(130)  

For 130B = , consider the following state r ′ :  

Strategy Sender period r ′    Strategy Receiver period r ′   
 1( )

r
m t m′ =  if 1[0, )t t∈    ( ) 0

r
a m′ =  if 1 2{ , }m m m∈   

2( )
r

m t m′ =  if 1 2[ , )t t t∈    1( )
r

a m a′ =  if 3m m=   
3( )

r
m t m′ =  if 2[ ,130]t t∈    

with the restriction that 1 20 50t t≤ < <  and 50 1 70a< < . 1 2 3, ,m m m  can be any 
three messages.  

 

Then, by straightforwardly applying the neologism dynamic, we get the fol-

lowing for rounds 1, 2, 3r r r′ ′ ′+ + +  and 4r ′ +   

    

 Strategy Sender period 1r ′ +    Strategy Receiver period  1r ′ +  
 1 2

1( ) { , }rm t U m m′+ ∼  if 1[0, / 2)t a∈    1( ) 0ra m′+ =  if 1 2{ , }m m m∈   
3

1( )rm t m′+ =  if 1 1[ / 2,35 / 2]t a a∈ +    2
1( ) 45 / 4ra m t′+ = +  if 3m m=   

1
1( )rm t n′+ =  if 1(35 / 2,130]t a∈ +    1( ) 70ra m′+ =  if 1m n=   

where 1n  is the credible neologism 170,(35 / 2,130]a+ . Furthermore, a Sender in 
1[0, / 2)a , will randomize uniformly over 1m  and 2m .  

    
 Strategy Sender period 2r +    Strategy Receiver period 2r ′ +   
 1 2

2( ) { , }rm t U m m′+ ∼  if 
2[0,45 / 2 / 4)t t∈ +   

 1( ) 0ra m′+ =  if 1 2{ , }m m m∈   

3
2( )rm t m′+ =  if 

2 2[45 / 2 / 4,115 / 2 / 4)t t t∈ + +   

 1
1( ) / 2 25ra m a′+ = −   if 3m m=   

1
2( )rm t n′+ =  if 2[115 /2 / 4,130]t t∈ +    1( ) 70ra m′+ =  if 1m n=   

   
Hence, if player type is in 1[0, / 2)a , then she will randomize uniformly over 

1m  and 2m .  
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Strategy Sender period 3r ′ +    Strategy Receiver period 3r ′ +   
 1 2

3( ) { , }rm t U m m′+ ∼  if 
1[0, / 4 25 / 2)t a∈ −   

 3( ) 0ra m′+ =  if 1 2{ , }m m m∈   

3
3( )rm t m′+ =  if 

1 1[ / 4 25 / 2, / 4 45 / 2)t a a∈ − +   

 2
3( ) / 4 5 / 2ra m t′+ = −   if 3m m=   

1
3( )rm t n′+ =  if 1[ / 4 45 / 2,130]t a∈ +    3( ) 70ra m′+ =  if 1m n=   

   

 Strategy Sender period 4r ′ +    Strategy Receiver period 4r ′ +   
 1 2

4( ) { , }rm t U m m′+ ∼  if 
2[0, / 8 5 / 4)t t∈ −   

 n 4( ) 0ra m+ =  if 1 2 3{ , , }m m m m∈   

3
4( )rm t m′+ =  if 
2 2[ / 8 5 / 4, / 8 135 / 4)t t t∈ − +   

 1
4( ) / 8 225 / 4ra m a′+ = +   if 1m n=   

14( )rm t n′ + =  if 2[ / 8 135 / 4,130]t t∈ +   

    
Hence, starting at period r′ ,we can characterize 4f  by 1 1

1 / 8 225 / 4p pa a+ = + , 

1
pt , 1

1pt + =  2 / 8 5 / 4pt −  and 2 2
1 1135 / 4 / 8p pt t+ += +  (as long as 1 20 50p pt t≤ < <  

and 150 70pa< < ).  

1 2450 / 7,p pa t=  270 / 7=  and 1
pt  25 / 7=  is a steady state and attractor to 

which the dynamic converges monotonically. Hence, if in some period the strate-

gy profile meets the conditions in r′ , then f  converges to the 4-cycle character-

ized by above values.  

We proceed to give the first periods of the neologism dynamic for the bab-

bling and naive initial conditions. We end as soon as the dynamic meets the 

sufficient conditions for their respective attractors specified above.  

If we start with a babbling profile in period 1, the neologism dynamic pro-

ceeds as follows:  

 
 Strategy Sender period 1  (Babbling)   Strategy Receiver period 1  (Babbling)  
 1( ) [0,130]m t U∼   if [0,130]t ∈    1( ) 45a m = for all [0,130]m ∈   
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Strategy Sender period 2  (Babbling)   Strategy Receiver period 2  (Babbling)  
 1

2( )m t n=  if [0,45 / 2)t ∈    2( ) 0a m = if 1m n=   

 2( ) [0,130]m t U∼   if [45 / 2,115 / 2]t ∈    2( ) 45a m = if [0,130]m ∈   

 2
2( )m t n=  if (115 / 2,130]t ∈    2( ) 70a m =  if 2m n=   

where 1 0,[0, 45 / 2)n =  and 2 70,(115 / 2,130] .n =   

 

Strategy Sender period 3  (Babbling)   Strategy Receiver period 3  (Babbling)  

 1
3( )m t n=  if [0,45 / 2)t ∈    3( ) 0a m = if 1[0,130] { }m n∈ ∪   

 3( ) [0,130]m t U∼   if [45 / 2,115 / 2)t ∈    3( ) 70a m = if 2m n=   

 2
3( )m t n=  if [115 / 2,130]t ∈    

    

Strategy Sender period 4  (Babbling)   Strategy Receiver period 4  (Babbling)  
 1

4( ) [0,130]m t U n∼ ∪   if [0,35)t ∈    4( ) 0a m = if 1[0,130]m n∈ ∪   

 2
4( )m t n=  if [35,130]t ∈    4( ) 70a m =  if 2m n=  

    

Strategy Sender period 5  (Babbling)   Strategy Receiver period 5  (Babbling)  

 1
5( ) [0,130]m t U n∼ ∪   if [0,35)t ∈    5( ) 0a m = if 1[0,130]m cupn∈   

 2
5( )m t n=  if [35,130]t ∈    5( ) 125 / 2a m =  if 2m n=   

   

 Strategy Sender period 6  (Babbling)   Strategy Receiver period 6  (Babbling)  

 1
6( ) [0,130] { }m t U n∼ ∪   if [0,125 / 4)t ∈    6( ) 0a m = if 1[0,130] { }m n∈ ∪   

 2
6( )m t n=  if (125 / 4,265 / 4]t ∈    6( ) 125 / 2a m =  if 2m n=   

 3
6( )m t n=  if (265 / 4,130]t ∈    6( ) 70a m =  if 3m n=   

where 3 70,(265 / 4,130]n = .   

 

 Strategy Sender period 7  (Babbling)   Strategy Receiver period 7  (Babbling)  
 1

7( ) [0,130] { }m t U n∼ ∪   if [0,125 / 4)t ∈    7( ) 0a m = if 1[0,130] { }m n∈ ∪   

 2
7( )m t n=  if [125 / 4,265 / 4)t ∈    7( ) 25 / 4a m = if 2m n=   

 3
7( )m t n=  if [265 / 4,130]t ∈    7( ) 70a m =  if 3m n=   

    

Strategy Sender period 8  (Babbling)   Strategy Receiver period 8  (Babbling)  

 1
8( ) [0,130] { }m t U n∼ ∪   if [0,25 / 8 )t ∈    8( ) 0a m = if 1 2[0,130] { , }m n n∈ ∪   

 2
8( )m t n=  if [25 / 8,305 / 8)t ∈    8( ) 25 / 4a m =  if 2m n=   

 3
8( )m t n=  if [305 / 8,130]t ∈    8( ) 70a m =  if 3m n=   
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Strategy Sender period 9  (Babbling)   Strategy Receiver period 9  (Babbling)  
 1 2

9( ) [0,130] { , }m t U n n∼ ∪  if 
[0,25 / 8 )t ∈   

 9( ) 0a m = if 1 2[0,130] { , }m n n∈ ∪   

 2
9( )m t n=  if [25 / 8,585 /16]t ∈    9( ) 1025 /16a m =  if 3m n=   

 3
9( )m t n=  if [585 /16,130]t ∈    

   

 Strategy Sender period 10 (Babbling) Strategy Receiver period 10 (Babbling) 
1 2

10( ) [0,130] { , }m t U n n∼ ∪ if 
[0,1025 / 32)t ∈   

 10( ) 0a m = if 1 2[0,130] { , }m n n∈ ∪   

 3
10( )m t n=  if [1025 / 32,2145 / 32]t ∈    10( ) 125 / 2a m =  if 3m n=   

 4
10( )m t n=  if (2145 / 32,130]t ∈    10( ) 70a m =  if 4m n=   

where 4 70,(2145 / 32,130] .n =    

 

Strategy Sender period 11 (Babbling) Strategy Receiver period 11 (Babbling) 
 1 2

11( ) [0,130] { , }m t U n n∼ ∪  if 
[0,125 / 4)t ∈   

 11( ) 0a m = if 1 2[0,130] { , }m n n∈ ∪   

 3
11( )m t n=  if [125 / 4,265 / 4)t ∈    11( ) 225 / 32a m =  if 3m n=   

 4
11( )m t n=  if [265 / 4,130]t ∈    11( ) 70a m =  if 4m n=   

   

 Strategy Sender period 12 (Babbling) Strategy Receiver period 12 (Babbling) 
 1 2

12( ) [0,130] { , }m t U n n∼ ∪   if 
[0,225 / 64)t ∈   

 12( ) 0a m = if 1 2[0,130] { , }m n n∈ ∪   

 3
12( )m t n=  if [225 / 64,2465 / 64)t ∈    12( ) 25 / 4a m =  if 3m n=   

 4
12( )m t n=  if [2465 / 64,130]t ∈    12( ) 70a m =  if 4m n=   

   

 Strategy Sender period 13 (Babbling) Strategy Receiver period 13 (Babbling) 
 1 2

13( ) [0,130] { , }m t U n n∼ ∪   if 
[0,25 / 8)t ∈   

 13( ) 0a m = if 1 2 3[0,130] { , , }m n n n∈ ∪   

 3
13( )m t n=  if [25 / 8,305 / 8)t ∈    13( ) 8225 /128a m =  if 4m n=   

 4
13( )m t n=  if [305 / 8,130]t ∈    

   

Now, 1 2
13 1325 / 8 305 / 8 50t t= < = <  and 1

1350 8225 /128 70.a< = <  Hence, 

period 13 meets the requirements of round r ′  and the dynamic converges to the 

attracting four-cycle.  

If we start with a naive profile in period 1, the neologism dynamic proceeds 

as follows:  
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 Strategy Sender period 1  (Naive)   Strategy Receiver period 1  (Naive)  
 1( )m t t=   if [0,130]t ∈    1( ) 0a m =  if [0,60]m ∈   
   1( ) 60a m m= −  if [60,130]m ∈   

    

Strategy Sender period 2  (Naive)   Strategy Receiver period 2  (Naive)  
 2( ) [0,60]m t U∼   if 0t =    1( ) 0a m =  if [0,60]m ∈   

 2( ) 60m t t= +  if (0,70)t ∈    1( ) 60a m m= −  if [60,130]m ∈   

 2( ) 130m t =  if [70,130]t ∈    

    

Strategy Sender period 3  (Naive)   Strategy Receiver period 3  (Naive)  
 3( ) [0,60]m t U∼   if 0t =    3( ) 0a m =  if [0,120)m ∈   

 3( ) 60m t t= +  if [0,70)t ∈    3( ) 120a m m= −  if [120,130)m ∈   

 3( ) 120m t =  if [70,130]t ∈    3( ) 70a m =  if 130m =   

    

 Strategy Sender period 4  (Naive)   Strategy Receiver period 4  (Naive)  
 4( ) [0,120]m t U∼   if 0t =    4( ) 0a m =  if [0,120)m ∈   

 4( ) 120m t t= +  if [0,10)t ∈    4( ) 120a m m= −  if [120,130)m ∈   

 4( ) 130m t = −ε  if [10,40)t ∈    4( ) 70a m =  if 130m =   

 4( ) 130m t =  if [40,130]t ∈    

    

 Strategy Sender period 5  (Naive)   Strategy Receiver period 5  (Naive)  
 5( ) [0,120]m t U∼   if 0t =    5( ) 0a m =  if [0,130)m ∈   

 5( ) 120m t t= +  if [0,10)t ∈    5( ) 65a m =  if 130m =   

 5( ) 130m t = − ε  if [10,40)t ∈    

 5( ) 130m t =  if [40,130]t ∈    

    

 Strategy Sender period 6  (Naive)   Strategy Receiver period 6  (Naive)  
 6( ) [0,130)m t U∼  if [0,65 / 2)t ∈    6( ) 0a m =  if [0,130)m ∈   

 6( ) 130m t =  if [65 / 2,135 / 2]t ∈    6( ) 65a m =  if 130m =   

 6 1( )m t n=  if (135 / 2,130]t ∈    6( ) 70a m =  if 1m n=   

where 1 70,(135 / 2,130]n = .  

    

 Strategy Sender period 7  (Naive)   Strategy Receiver period 7  (Naive)  
 7( ) [0,130)m t U∼  if [0,65 / 2)t ∈    7( ) 0a m =  if [0,130)m ∈   

 7( ) 130m t =  if [65 / 2,135 / 2]t ∈    7( ) 15 / 2a m =  if 130m =   

 7 1( )m t n=  if (135 / 2,130]t ∈    7( ) 70a m =  if 1m n=   
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 Strategy Sender period 8  (Naive)   Strategy Receiver period 8  (Naive)  
 8( ) [0,130)m t U∼  if [0,15 / 4)t ∈    8( ) 0a m =  if [0,130)m ∈   

 8( ) 130m t =  if [15 / 4,155 / 4]t ∈    8( ) 15 / 2a m =  if 130m =   

 8 1( )m t n=  if (155 / 4,130]t ∈    8( ) 70a m =  if 1m n=   

    

Strategy Sender period 9  (Naive)   Strategy Receiver period 9  (Naive)  

9( ) [0,130)m t U∼  if [0,15 / 4)t ∈ }   9( ) 0a m =  if [0,130]m ∈   

9( ) 130m t =  if [15 / 4,155 / 4]t ∈ }   9( ) 515 / 8a m =  if 1m n=   

9 1( )m t n=  if (155 / 4,130]t ∈ }   

    

Now, 1 2
9 915 / 4 155 / 4 50t t= < = <  and 1

950 515 / 8 70.a< = <  Hence, peri-

od 9 meets the requirements of round r ′  and the dynamic converges to the 

attracting four-cycle.  

Finally, we turn to the prediction errors for the attracting four-cycle. First 

the pooling equilibrium. In the same way as above, it can be straightforwardly 

calculated that prediction error of the pooling equilibrium in periods ,r ′  1,r ′ +   

2r ′ +  and 3r ′ +  is respectively equal to 
17145 2585 304 2640

, ,  and .
637 91 91 91

 Hence, 

the average prediction error of the pooling equilibrium over the four cycle is 

18750
29.4.

637
 The prediction error of the separating equilibrium in periods ,r ′  

1,r ′ +   2r ′ +  and 3r ′ +  is respectively equal to 
4440 635 1825 7625

, ,  and .
637 91 91 91

 

Hence, the average prediction error of the separating equilibrium over the four 

cycle is 
29285

11.5
2548

.  

G(210) 

We continue with 210.B=  Consider the following state r ′ :  
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 Strategy Sender period r ′    Strategy Receiver period r ′   
 1( )rm t m′ =  if 1[0, )t t∈    ( ) 0ra m′ =  if 1 2{ , }m m m∈   

 2( )rm t m′ =  if 1 2[ , )t t t∈    1( )ra m a′ =  if 3m m=   

 3( )rm t m′ =  if 2 3[ , )t t t∈    2( )ra m a′ =  if 4m m=   

 4( )rm t m′ =  if 3 4[ , )t t t∈    3( )ra m a′ =  if 5m m=   

 5( )rm t m′ =  if 4 5[ , ]t t t∈    4( )ra m a′ =  if 1m n=   

 1( )rm t n′ =  if 5( ,210]t t∈    

where 1 2 3 4 5t t t t t< < < <  with 10 15,t< <  3 60t <  and 5 90;t <  
1 2 3 40 a a a a< < < <  with 2 30a <  and 4 90a <  and 1 4 5,[ , 210] .n a t=   

 
Then, by straightforwardly applying the neologism dynamic, we get for round 1r ′ + :  
 

 Strategy Sender period 1r ′ +    Strategy Receiver period 1r ′ +   
 1

1( )rm t m′+ =  if 1[0, / 2)t a∈    1( ) 0ra m′+ =  if 1 2 3{ , , }m m m m∈   

 3
1( )rm t m′+ =  if 1 1 2[ / 2,( ) / 2)t a a a∈ +    4

1( ) 60ra m t′+ = −  if  4m m=   

 4
1( )rm t m′+ =  if 

1 2 2 3[( ) / 2,( ) / 2)t a a a a∈ + +   

 5
1( ) 60ra m t′+ = − if 5m m=   

 5
1( )rm t m′+ =  if 

2 3 3 4[( ) / 2,( )/ 2)t a a a a∈ + +   

 5
1( ) 45 / 2ra m t′+ = +   if 1m n=   

 1
1( )rm t n′+ =  if 

3 4 42
[( ) / 2, (45 )]

3
t a a a∈ + +   

 4
1( ) 60 / 3ra m a′+ = + if 2m n=   

 2
1( )rm t n′+ =  if 42

( (45 ),210]
3

t a∈ +   
 

where 2 4 42
60 / 3,( (45 ),210] .

3
n a a= + +   

 

Hence, for period r r ′≥ we can describe f  by 4 4
1 60 / 3,r ra a+ = +  

5 4
1

2
(45 / 3),

3r rt a+ = +  3 5
1 45 / 2,r ra t+ = + 4 3 4

1

1
( ),

2r r rt a a+ = + 2 5
1 60,r ra t+ = −  

3 2 3
1

1
( ),

2r r rt a a+ = +  1 4
1 60,r ra t+ = − 2 1 2

1

1
( )

2r r rt a a+ = + and 1 1
1

1
2r rt a+ =  (as long as 

1 5,...,r ra a  and 1 5,...,r rt t  meet the above conditions).  

Since 4 4
1 60 / 3,r ra a+ = +  4

ra  converges monotonically to 90. Consequently, it 

follows that  
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4 590,  90,r ra t= =  3
ra  90,=  4 90,rt =  2

ra  30,=  3 160,  r rt a=  30,=   2 30rt =  

and 1 15rt =  is an attractor for this dynamic to which converges. (It is not a 

steady state, as if 4 90ra = , then no neologism could be made. Nonetheless, the 

profile is never reached and all points in its neighborhood converge to it.)  

We now proceed to give the first periods of the neologism dynamic for the 

babbling and naive initial conditions.  

If we start with a babbling profile in period 1, the neologism dynamic pro-

ceeds as follows:  

    
 Strategy Sender period 1  (Babbling)   Strategy Receiver period 1  (Babbling)  
 1( ) [0,210]m t U∼   if [0,210]t ∈    1( ) 45a m = for all [0,210]m ∈   

    

Strategy Sender period 2  (Babbling)   Strategy Receiver period 2  (Babbling)  
 1

2( )m t n=  if [0,45 / 2)t ∈    2( ) 0a m = if 1m n=   

 2( ) [0,210]m t U∼   if [45 / 2,60]t ∈    2( ) 45a m = if [0,210]m ∈   

 2
2( )m t n=  if (60,210]t ∈    2( ) 75a m =  if 2m n=   

where 1 0,[0, 45 / 2)n =  and 2 75,(60,210] .n =   

    

 Strategy Sender period 3  (Babbling)   Strategy Receiver period 3  (Babbling)  
 1

3( )m t n=  if [0,45 / 2)t ∈    3( ) 0a m = if 1[0,210] { }m n∈ ∪   

 3( ) [0,210]m t U∼  if [45 / 2,60)t ∈    3( ) 75a m = if 2m n=   

 2
3( )m t n=  if [60,80]t ∈    3( ) 85a m =  if 3m n=   

 3
3( )m t n=  if (80,210]t ∈    

where 3 85,(80,210] .n =    

   

 Strategy Sender period 4  (Babbling)   Strategy Receiver period 4  (Babbling)  
 1

4( ) [0,210] { }m t U n∼ ∪  if [0,75 / 2)t ∈    4( ) 0a m = if 1[0,210] { }m n∈ ∪   

 2
4( )m t n=  if [75 / 2,80)t ∈    4( ) 20a m =  if 2m n=   

 3
4( )m t n=  if [80,260 / 3]t ∈    4( ) 85a m =  if 3m n=   

 4
4( )m t n=  if (260 / 3,210]t ∈    4( ) 265 / 3a m =  if 4m n=   

where 4 265 / 3,(260 / 3,210] .n =    
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 Strategy Sender period 5  (Babbling)   Strategy Receiver period 5  (Babbling)  
 1

5( ) [0,210] { }m t U n∼ ∪  if [0,10)t ∈    5( ) 0a m = if 1[0,210] { }m n∈ ∪   

 2
5( )m t n=  if [10,105 / 2)t ∈    5( ) 20a m =  if 2m n=   

 3
5( )m t n=  if [105 / 2,260 / 3)t ∈    5( ) 80 / 3a m =  if 3m n=   

 4
5( )m t n=  if [260 / 3,800 / 9]t ∈    5( ) 265 / 3a m =  if 4m n=   

 5
5( )m t n=  if (800 / 9,210]t ∈    5( ) 805 / 9a m =  if 5m n=   

where 5 805 / 9,(800 / 9,210] .n =    

   

 Strategy Sender period 6  (Babbling)   Strategy Receiver period 6  (Babbling)  
 1

6( ) [0,210] { }m t U n∼ ∪  if [0,10)t ∈    6( ) 0a m = if 1 2[0,210] { , }m n n∈ ∪   

 2
6( )m t n=  if [10,70 / 3)t ∈    6( ) 80 / 3a m =  if 3m n=   

 3
6( )m t n=  if [70 / 3,115 / 2)t ∈    6( ) 260 / 9a m =  if 4m n=   

 4
6( )m t n=  if [115 / 2,800 / 9)t ∈    6( ) 805 / 9a m =  if 5m n=   

 5
6( )m t n=  if [800 / 9,2420 / 5]t ∈    6( ) 2425 / 27a m = if 6m n=   

 6
6( )m t n=  if (2420 / 27,210]t ∈    

where 6 2425 / 27,(2420 / 27,210] .n =   

  

Now, 1
60 10 15,t< = < 3

6 115 / 2 60,t = < 5
6 2420 / 27 90,t = < 2

6 260 / 9 30a = <  

and 4
6 2425 / 27 90a = <  Hence, period 6 meets the requirements of round r ′  

and the dynamic converges to the attractor.  

 If we start with a naive profile in period 1, the neologism dynamic proceeds 

as follows:  

 
Strategy Sender period 1  (Naive)   Strategy Receiver period 1  (Naive)  
 1( )m t t=   if [0,210]t ∈    1( ) 0a m =  if [0,60]m ∈   
   1( ) 60a m m= −  if [60,210]m ∈   

    

 Strategy Sender period 2  (Naive)   Strategy Receiver period 2  (Naive)  
 2( ) [0,60]m t U∼  if 0t =    2( ) 0a m =  for all [0,60]m ∈   

 2( ) 60m t t= +  if (0,150)t ∈    2( ) 60a m m= −  for all [60,210]m ∈   

 2( ) 210m t =  if [150,210]t ∈    
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Strategy Sender period 3  (Naive)   Strategy Receiver period 3  (Naive)  
 3( ) [0,60]m t U∼  if 0t =    3( ) 0a m =  if [0,120)m ∈   

 3( ) 60m t t= +  if (0,150)t ∈    3( ) 120a m m= −  if [120,210)m ∈   

 3( ) 210m t =  if [150,210]t ∈    3( ) 120a m =  if 210m =   

    

 Strategy Sender period 4  (Naive)   Strategy Receiver period 4  (Naive)  
 4( ) [0,120]m t U∼  if 0t =    4( ) 0a m =  if [0,120)m ∈   

 4( ) 120m t t= +  if (0,90)t ∈    4( ) 120a m m= −  if [120,210)m ∈   

 4( ) 210m t = −ε  if [90,105)t ∈    4( ) 120a m =  if 210m =   

 4( ) 210m t =  if [105,210]t ∈    

    

Strategy Sender period 5  (Naive)   Strategy Receiver period 5  (Naive)  
 5( ) [0,120]m t U∼  if 0t =    5( ) 0a m =  if [0,180)m ∈   

 5( ) 120m t t= +  if (0,90)t ∈    5( ) 180a m m= −  if [180,210 )m ∈ − ε   

 5( ) 210m t = −ε  if [90,105)t ∈    5( ) 45a m =  if 210m = − ε   

 5( ) 210m t =  if [105,210]t ∈    5( ) 195 / 2a m =  if 210m =   

   

 Strategy Sender period 6  (Naive)   Strategy Receiver period 6  (Naive)  
 6( ) [0,180]m t U∼  if 0t =    6( ) 0a m =  if [0,180)m ∈   

 6( ) 180m t t= +  if (0,30)t ∈    6( ) 180a m m= −  if [180,210 )m ∈ − ε   

 6( ) 210 2m t = − ε  if [30,75 / 2)t ∈    6( ) 45a m =  if 210m = − ε   

 6( ) 210m t = −ε  if [75 / 2,285 / 4)t ∈    6( ) 195 / 2a m =  if 210m =   

 6( ) 210m t =  if [285 / 4,210]t ∈    

    

Strategy Sender period 7  (Naive)   Strategy Receiver period 7  (Naive)  
 6( ) [0,180]m t U∼  if 0t =    7( ) 0a m =  if [0,210 2 )m ∈ − ε   

 7( ) 180m t t= +  if (0,30)t ∈    7( ) 45 / 4a m =  if 210m = − ε   

 7( ) 210 2m t = − ε  if [30,75 / 2)t ∈    7( ) 645 / 8a m =  if 210m =   

 7( ) 210m t = −ε  if [75 / 2,285 / 4)t ∈    

 7( ) 210m t =  if [285 / 4,210]t ∈    

   

 Strategy Sender period 8  (Naive)   Strategy Receiver period 8  (Naive)  
 8( ) [0,210 2 )m t U∼ − ε  if [0,45 / 8)t ∈    8( ) 0a m =  if [180,210 2 )m ∈ − ε   

 8( ) 210m t = −ε  if [45 / 8,735 /16)t ∈    8( ) 45 / 4a m =  if 210m = − ε   

 8( ) 210m t =  if [735 /16,335 / 4)t ∈    8( ) 645 / 8a m =  if 210m =   

 1
8( )m t n=  if [335 / 4,210]t ∈    8( ) 695 / 8a m =  if 1m n=   

where 1 695 / 8,(335 / 4,210] .n =    
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Strategy Sender period 9  (Naive)   Strategy Receiver period 9  (Naive)  
 9( ) [0,210 2 )m t U∼ − ε  if [0,45 / 8)t ∈    9( ) 0a m =  if [0,210 )m ∈ − ε   

 9( ) 210m t = −ε  if [45 / 8,735 /16)t ∈    9( ) 95 / 4a m =  if 210m =   

 9( ) 210m t =  if [735 /16,335 / 4)t ∈    9( ) 695 / 8a m =  if f 1m n=   

 1
9( )m t n=  if [335 / 4,1055 /12]t ∈    9( ) 2135 / 24a m =  if 2m n=   

 2
9( )m t n=  if (1055 /12,210]t ∈    

where 2 2135 / 24,(1055 / 12,210] .n =    

   

 Strategy Sender period 10 (Naive) Strategy Receiver period 10 (Naive)  
 10( ) [0,210 )m t U∼ −ε  if [0,95 / 8)t ∈    10( ) 0a m =  if [0,210 )m ∈ − ε   

 10( ) 210m t =  if [95 / 8,885 /16)t ∈    10( ) 95 / 4a m =  if 210m =   

 1
10( )m t n=  if [885 /16,1055 /12)t ∈    10( ) 335 /12a m =  if 1m n=   

 2
10( )m t n= if [1055 /12,3215 / 36]t ∈    10( ) 2135 / 24a m =  if 2m n=   

 3
10( )m t n= if (3215 / 36,210]t ∈    10( ) 6455 / 72a m = if 3m n=   

where 3 6455 / 72,(3215 / 36,210] .n =    

   

 Strategy Sender period 11 (Naive) Strategy Receiver period 11 (Naive)  
 11( ) [0,210 )m t U∼ − ε  if [0,95 / 8)t ∈    11( ) 0a m =  if [0,210]m ∈   

 11( ) 210m t =  if [95 / 8,155 / 6)t ∈    11( ) 335 /12a m =  if 1m n=   

 1
11( )m t n=  if [155 / 6,935 /16)t ∈    11( ) 1055 / 36a m =  if 2m n=   

 2
11( )m t n= if [935 /16,3215 / 36)t ∈    11( ) 6455 / 72a m =  if 3m n=   

 3
11( )m t n= if [3215 / 36,9695 /108]t ∈    11( ) 19415 / 216a m =  if 4m n=   

 4
11( )m t n= if (9695 /108,210]t ∈    

 where 4 19415 / 216,(9695 / 108,210] .n =    

 

Now, 1
11 95 / 8 15,t = < 3

11 935 /16 60,t = < 5
11 9695 /108 90,t = <  

2
11 1055 / 36 30a = <  and 4

11 19415 / 216 90.a = <  Hence, period 11 meets the 

requirements of round r ′  and the dynamic converges to the attractor.  

Finally, we turn to the prediction errors for of the equilibria with respect to 

the attractor. The average prediction error of the pooling equilibrium is equal to 

285
40.7.

7
 The average prediction error of the separating equilibrium is equal 

to 
195

27.9.
7
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Appendix C (Online): Instructions  

We include the experimental instructions (including check questions) of the 

G(120) treatment for both the “Chooser” (Sender) and “Proposer” (Receiver) 

roles. The instructions of the G(130) and G(210) treatments are very similar. 
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Instructions Chooser 

 
INSTRUCTIONS          

  
 

Welcome to this decision-making experiment. Please read these instructions carefully. We will 
first provide you with an outline of the instructions and then we will proceed with a detailed 
description of the instructions. 

 
 

OUTLINE 
 

Experiment 
• At the start of the experiment you will receive a starting capital of 100 points. In addition, 

you can earn points with your decisions.  
• At the end of the experiment, you receive 1,5 (one-and-a-half) euro for each 100 points 

earned. 
• The experiment consists of around 50 periods. 
• Your role in the whole experiment is: CHOOSER.  
• In each period, you will be randomly paired with a different participant who performs the 

role of Proposer.  
 

Sequence of events 
• In each period, you and the Proposer will bargain over an outcome, which can be any 

number between 0 and 120. 
• Your preferred outcome is a number between 0 and 120. Any number between 0 and 120 is 

equally likely. The Proposer’s preferred outcome is always 0. 
•  Each period you will receive a new (random) preferred outcome. You are the only one who 

is informed about your preferred outcome.  
• After learning your preferred outcome, you will send a SUGGESTION for a proposal 

(between 0 and 120) to the Proposer.  
• The Proposer is informed of your suggestion and makes a PROPOSAL (between 0 and 120) 

for the outcome. 
• After you have been informed of the proposal, you accept or reject it. 
• At the end of a period, you are informed of the points you earned (your payoff). 

 
Payoffs 
• When you accept a proposal, your payoff is 60 minus the distance between your preferred 

outcome and the proposal. 
•  The Proposer’s payoff is 60 minus 0.4 times the proposal in this case.  
• When you reject a proposal, you receive 0 points and the Proposer receives 0 points. 

 
History Overview 
When making a decision, you may use the History Overview, which provides an overview of 
the results of the other Chooser/Proposer pairs (including your own pair) in the 15 most recent 
periods. The left part of the overview is a Table with four columns SUGGESTION, PRO-
POSAL, ACCEPTANCE and PREFERRED OUTCOME. In a row, you will find a particular 
pair’s suggestion, the corresponding proposal, whether the Chooser accepted or rejected the 
proposal and the preferred outcome of that Chooser. On the right, you find a Graph where the 
most recent results are represented by blue squares. On the horizontal axis you can read the 
value of the suggestion and on the vertical axis the value of the corresponding proposal 
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DETAILED INSTRUCTIONS 

 
Now we will describe the experiment in detail. At the start of the experiment you will receive a 
starting capital of 100 points. During the experiment you will be asked to make a number of 
decisions. Your decisions and the decisions of the participants you will be paired with will 
determine how much money you earn. The experiment consists of around 50 periods. In each 
period, your earnings will be denoted in points. Your final earnings in the experiment will be 
equal to the starting capital plus the sum of your earnings in all periods. At the end of the 
experiment, your earnings in points will be transferred to money. For each 100 points you earn, 
you will receive 1,5 (one-and-a-half) euro. Your earnings will be privately paid to you in cash.  
In each period, all participants are paired in couples. One participant within a pair has the role of 
CHOOSER, the other participant performs the role of PROPOSER. In all periods you keep the 
same role.  

 
Your role is: CHOOSER.  

 
 

MATCHING PROCEDURE  
For the duration of the experiment, you will be in a fixed matching group of five Proposers and 
five Choosers (hence 10 participants in total, including yourself). In each period you are 
randomly matched to another participant in this matching group with the role of Proposer. You 
will never learn with whom you are matched.  

 
BARGAINING AND PREFERRED OUTCOMES 
In each period, you and the Proposer with whom you are coupled will bargain over an outcome. 
The Proposer’s preferred outcome is always 0. Your preferred outcome is a number between 
(and including) 0 and 120. Any number between 0 and 120 is equally likely. Each period you 
will receive a new preferred outcome that does not depend on your preferred outcome of any 
previous period. You are the only one who is informed about your preferred outcome. The 
Proposer only knows that your preferred outcome is a number between 0 and 120 (and that each 
such number is equally likely).  

 
SEQUENCE OF EVENTS IN A PERIOD  
After you have learned your preferred outcome in a period, you will send a SUGGESTION for a 
proposal to the Proposer. You may send any suggestion between (and including) 0 and 120. It is 
up to you to decide whether and how you let your suggestion depend on your preferred outcome. 
Then, the Proposer with whom you are coupled is informed of your suggestion (but not of your 
preferred outcome). Subsequently, the Proposer makes a PROPOSAL for the outcome. A 
proposal is any number between (and including) 0 and 120. Finally, you will choose to accept or 
reject the proposal. 
At the end of a period, you are informed of the payoff (points you earned) that you made. This 
payoff is automatically added to your total earnings (or in case that you make a loss, it is 
subtracted from your total earnings). The Proposer is informed of the outcome, your preferred 
outcome and her or his own payoff. 

 
Please note that the experiment will only continue from one phase to another after everybody 
has pressed OK/PROCEED. For this reason, please press OK/PROCEED as soon as you have 
made your decision. 
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PAYOFFS WHEN YOU ACCEPT THE PROPOSAL 
When you accept the proposal, you will receive a payoff of 60 minus the distance between your 
preferred outcome and the proposal: 

 
Your payoff = 60 – distance(your preferred outcome and proposal).  
 
When you accept the proposal, the Proposer’s payoff is 60 minus 0.4 times the proposal: 
 
Payoff Proposer = 60 – 0.4 * proposal. 
 
It is possible to reject a proposal. 
 

PAYOFFS WHEN YOU REJECT THE PROPOSAL 
When you reject a proposal, then the outcome is the status quo. In this case, you will receive 0 
points and the Proposer will receive 0 points.  
Notice that accepting an offer gives you a higher payoff than rejecting it if and only if the 
distance between the proposal and your preferred outcome is smaller than 60. The Proposer’s 
payoff is higher when you accept than when you reject in all cases. 

 
EXAMPLE 1. Suppose your preferred outcome is 80 and you receive a proposal of 100. Then, 

the distance between your preferred outcome and proposal is 100 - 80 = 20.  
If you accept, your payoff is 60 - 20 = 40. The Proposer’s payoff in this case is 60 – 0.4*100 = 
20.  

If you reject, your payoff is 0 and the Proposer’s payoff is 0.  
 
EXAMPLE 2. Suppose your preferred outcome is 80 and you receive a proposal of 10. Then, 

the distance between your preferred outcome and the proposal is 80 - 10 = 70. 
If you accept, your payoff is 60 - 70 = -10. The Proposer’s payoff in this case is 60 – 0.4*10 

= 56. 
If you reject, your payoff is 0 and the Proposer’s payoff is 0. 
 

HISTORY OVERVIEW  
When making a decision, you may use the History Overview, which fills the lower part of the 
screen. The History Overview summarizes the results of the most recent 15 periods. (If less than 
15 periods have been completed, this history overview contains results of all completed periods.)  
Apart from your own results in the previous periods, the History Overview also contains the 
results of the other Chooser/Proposer pairs in your matching group. In total you are thus 
informed about the past results of the same matching group of five Chooser/Proposer pairs. All 
other Choosers and Proposers in your matching group will have the same information. The 
presentation of information for Proposers is different than for Choosers. 

 
TABLE 
Below you see an example of the history overview. THE NUMBERS IN THE HISTORY 
OVERVIEW DO NOT INDICATE WHAT YOU SHOULD DO IN THE EXPERIMENT. The 
left part of the history overview is a Table with four columns. The first column labelled SUG-
GESTION contains the suggestions made by the Choosers in the recent previous periods. The 
second column labelled PROPOSAL gives the proposal that was made by the Proposer as a 
response to the suggestion in the same row. The third column labelled ACCEPTANCE shows 
whether the Chooser accepted or rejected the proposal. The fourth column labelled PRE-
FERRED OUTCOME shows the preferred outcome of the Chooser. 
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The results shown in the history overview will be sorted on the basis of suggestion in ascending 
order. (The lower the suggestion, the higher the place in the table.) When the suggestion is the 
same for two or more different results, these observations will be sorted on the basis of proposal, 
again in ascending order. In the example above, this applies to the third and the fourth row, 
where two Choosers chose the same suggestion but the corresponding Proposers chose different 
proposals. More generally, observations have been sorted first on suggestion, then on proposal, 
then on acceptance or rejection and finally on preferred outcome. 

 
 

GRAPH 
 

On the right of the history overview, the most recent results are represented in a graph. The 
horizontal axis presents the suggestion and the vertical axis presents the proposal. Each previous 
observation is represented by a blue square. On the horizontal axis you can read the value of the 
suggestion for a particular result and on the vertical axis you can read the value of the corre-
sponding proposal. (Proposers will see preferred outcomes on the vertical axis, rather than 
proposals.) 

 
EXAMPLE. Consider the square that is displayed in the lower left corner of the Graph shown 

above. Here, the Chooser made a suggestion of 30. The Proposer responded with a proposal of 
10. 

  
You have now reached the end of the instructions. The next page contains some questions 
concerning the experiment. When all participants have answered all questions correctly, we will 
proceed with the experiment. 
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QUESTIONS 
 

Please answer the following questions. THE VALUES USED IN SOME QUESTIONS DO 
NOT INDICATE WHAT YOU SHOULD DO IN THE EXPERIMENT. RATHER, THEY 
HAVE BEEN CHOSEN TO FACILITATE CALCULATIONS. 

 
1. Is the following statement correct? ‘In each period I am coupled with the same Proposer.’ 

 
2. Is the following statement correct? ‘My preferred position will be observed by the Proposer 
before (s)he makes her or his proposal.’ 

 
3. 
(A) What is the highest value your preferred outcome can take on? 
(B) What is the highest value a suggestion of yours can take on? 
(C) What is the highest value a proposal can take on? 

 
4. Consider a period in which your preferred outcome is 50. You chose to send a suggestion of 
40. The Proposer made a proposal of 20, which was accepted by you. 
(A) What are your own earnings in this period? 
(B) How much does the Proposer to whom you are paired earn? 

 
5. Consider a period in which your preferred outcome is 90. You chose to send a suggestion of 
100. The Proposer made a proposal of 0, which was accepted by you. 
(A) What are your own earnings in this period? 
(B) How much does the Proposer to whom you are paired earn? 

 
6. Consider a period in which your preferred outcome is 30. You chose to send a suggestion of 
40. The Proposer made a proposal of 10, which was rejected by you. 
(A) What are your own earnings in this period? 
(B) How much does the Proposer to whom you are paired earn? 

 
 
When you are ready answering the questions, please raise your hand.  
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Instructions Proposer 

INSTRUCTIONS           
  
Welcome to this decision-making experiment. Please read these instructions carefully. We will 
first provide you with an outline of the instructions and then we will proceed with a detailed 
description of the instructions. 

 
 

OUTLINE 
 

Experiment 
• At the start of the experiment you will receive a starting capital of 100 points. In addition, 

you can earn points with your decisions.  
• At the end of the experiment, you receive 1,5 (one-and-a-half) euro for each 100 points 

earned. 
• The experiment consists of around 50 periods. 
• Your role in the whole experiment is: PROPOSER.  
• In each period, you will be randomly paired with a different participant who performs the 

role of Chooser.  
 

Sequence of events 
• In each period, you and the Chooser will bargain over an outcome, which can be any 

number between 0 and 120. 
• Your preferred outcome is always 0.  
• The Chooser’s preferred outcome is a number between 0 and 120. Any number between 0 

and 120 is equally likely.  
• Each period, each Chooser will receive a new (random) preferred outcome. The Chooser 

is the only one who is informed about her or his preferred outcome.  
• After learning her or his preferred outcome, the Chooser with whom you are matched will 

send a SUGGESTION for a proposal (between 0 and 120) to you.  
• You are informed of the Chooser’s suggestion and make a PROPOSAL (between 0 and 

120) for the outcome. 
• After the Chooser has been informed of the proposal, she or he accepts or rejects it. 
• At the end of a period, you are informed of the points you earned (your payoff). 
 
Payoffs 
• When the Chooser accepts your proposal, your payoff is 60 minus 0.4 times the proposal.  
• The Chooser’s payoff is in this case 60 minus the distance between her or his preferred 

outcome and the proposal. 
• When the Chooser rejects your proposal, you receive 0 points and the Chooser 0 points. 

 
History Overview 
When making a decision, you may use the History Overview, which provides an overview of 
the results of five Chooser/Proposer pairs (including your own pair) in the 15 most recent 
periods. The left part of the overview is a Table with four columns SUGGESTION, PRE-
FERRED OUTCOME, PROPOSAL and ACCEPTANCE. In a row, you will find a particular 
pair’s suggestion, the preferred outcome of the Chooser, the proposal made by the Proposer and 
whether the Chooser accepted or rejected the proposal. On the right, you find a Graph where the 
most recent results are represented by blue squares. On the horizontal axis you can read the 
value of the suggestion and on the vertical axis the value of the corresponding preferred out-
come of the Chooser. 
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DETAILED INSTRUCTIONS 

 
Now we will describe the experiment in detail. At the start of the experiment you will receive a 
starting capital of 100 points. During the experiment you will be asked to make a number of 
decisions. Your decisions and the decisions of the participants you will be paired with will 
determine how much money you earn. The experiment consists of around 50 periods. In each 
period, your earnings will be denoted in points. Your final earnings in the experiment will be 
equal to the starting capital plus the sum of your earnings in all periods. At the end of the 
experiment, your earnings in points will be transferred to money. For each 100 points you earn, 
you will receive 1,5 (one-and-a-half) euro. Your earnings will be privately paid to you in cash.  
In each period, all participants are paired in couples. One participant within a pair has the role of 
CHOOSER, the other participant performs the role of PROPOSER. In all periods you keep the 
same role. 

 
Your role is: PROPOSER.  
 

MATCHING PROCEDURE  
For the duration of the experiment, you will be in a fixed matching group of five Proposers and 
five Choosers (hence 10 participants in total, including yourself). In each period you are 
randomly matched to another participant with the role of Chooser. You will never learn with 
whom you are matched.  

 
BARGAINING AND PREFERRED OUTCOMES 
In each period, you and the Chooser with whom you are coupled will bargain over an outcome. 
Your preferred outcome is always 0. The Chooser’s preferred outcome is a number between 
(and including) 0 and 120. Any number between 0 and 120 is equally likely. Each period, each 
Chooser will receive a new preferred outcome that does not depend on a preferred outcome of 
any previous period. The Chooser is the only one who is informed about her or his preferred 
outcome. You only know that the Chooser’s preferred outcome is a number between 0 and 120 
(and that each such number is equally likely). 
 
SEQUENCE OF EVENTS IN A PERIOD  
After the Chooser with whom you are matched has learned her or his preferred outcome in a 
period, she or he will send a SUGGESTION for a proposal to you. The Chooser may send any 
suggestion between (and including) 0 and 120. It is up to the Chooser to decide whether and 
how she or he lets her or his suggestion depend on her or his preferred outcome. Then, you are 
informed of the Chooser’s suggestion (but not of her or his preferred outcome). Subsequently, 
you make a PROPOSAL for the outcome. A proposal is any number between (and including) 0 
and 120. Finally, the Chooser will choose to accept or reject the proposal. 
At the end of a period, you are informed of the outcome of the period and the preferred outcome 
of the Chooser you were paired with. Finally, you are informed of the payoff (points you earned) 
that you made. This payoff is automatically added to your total earnings (or in case that you 
make a loss, it is subtracted from your total earnings).  

 
Please note that the experiment will only continue from one phase to another after everybody 
has pressed OK/PROCEED. For this reason, please press OK/PROCEED as soon as you have 
made your decision. 
 
PAYOFFS WHEN THE CHOOSER ACCEPTS THE PROPOSAL 
When the Chooser accepts your proposal, your payoff is 60  minus 0.4 times the proposal: 

 
Your payoff = 60 – 0.4 * proposal. 



FOR ONLINE PUBLICATION 

67 
 

 
When the Chooser accepts your proposal, the Chooser will receive a payoff of 60 minus the 
distance between her or his preferred outcome and the proposal: 

 
Payoff Chooser = 60 – distance(her or his preferred outcome and proposal).  
 

It is possible for a Chooser to reject a proposal. 
 
PAYOFFS WHEN THE CHOOSER REJECTS THE PROPOSAL 
When the Chooser rejects a proposal, then the outcome is the status quo. In this case, you will 
receive 0 points and the Chooser will receive 0 points.  

 
Notice that accepting an offer gives the Chooser a higher payoff than rejecting it if and only if 
the distance between the proposal and her preferred outcome is smaller than 60. Your payoff is 
higher when the Chooser accepts than when she or he rejects in all cases. 

 
EXAMPLE 1. Suppose the Chooser’s preferred outcome turns out to be 80 (which you can-

not know) and you make a proposal of 100. Then, the distance between her preferred outcome 
and your proposal is 100 - 80 = 20.  
If the Chooser accepts, your payoff is 60 – 0.4*100 = 20. The Chooser’s payoff in this case is 60 
- 20 = 40.  
If the Chooser rejects, your payoff is 0 and the Chooser’s payoff is 0.  

 
EXAMPLE 2. Suppose the Chooser’s preferred outcome turns out to be 80 and you make a 

proposal of 10. Then, the distance between her preferred outcome and your proposal is 80 - 10 = 
70. 
If the Chooser accepts, your payoff is 60 – 0.4*10 = 56. The Chooser’s payoff in this case is 60 
- 70 = -10.  
If the Chooser rejects, your payoff is 0 and the Chooser’s payoff is 0.  

 
HISTORY OVERVIEW  
When making a decision, you may use the History Overview, which fills the lower part of the 
screen. The History Overview summarizes the results of the most recent 15 periods. (If less than 
15 periods have been completed, this history overview contains results of all completed periods.)  
Apart from your own results in the previous periods, the history overview also contains the 
results of the other Chooser/Proposer pairs in your matching group. In total you are thus 
informed about the past results of the same group of five Chooser/Proposer pairs. All Choosers 
and Proposers in your matching group will have the same information. The presentation of 
information is different for Choosers than for Proposers.  

 
TABLE 
Below you see an example of the history overview. THE NUMBERS IN THE HISTORY 
OVERVIEW DO NOT INDICATE WHAT YOU SHOULD DO IN THE EXPERIMENT. The 
left part of the history overview is a table with four columns. The first column labelled SUG-
GESTION contains the suggestions made by the Choosers in the recent previous periods. The 
second column labelled PREFERRED OUTCOME shows the preferred outcome of the Chooser. 
The third column labelled PROPOSAL gives the proposal that was made by the Proposer as a 
response to the suggestion in the same row. The fourth column labelled ACCEPTANCE shows 
whether the Chooser accepted or rejected the proposal.  
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The results shown in the history overview will be sorted on the basis of suggestion in ascending 
order. (The lower the suggestion, the higher the place in the table.) When the suggestion is the 
same for two or more different results, these observations will be sorted on the basis of pre-
ferred outcome, again in ascending order. In the example above, this applies to the third and the 
fourth row, where two Choosers chose the same suggestion but had different preferred outcomes. 
More generally, observations have been sorted first on suggestion, then on preferred outcome, 
then on proposal and finally on acceptance or rejection. 

 
GRAPH 
On the right of the history overview, the most recent results are represented in a graph. The 
horizontal axis presents the suggestion and the vertical axis presents the proposal. Each previous 
observation is represented by a square. On the horizontal axis you can read the value of the 
suggestion for a particular result and on the vertical axis you can read the value of the corre-
sponding proposal. If the square is green, the particular proposal was accepted and if the square 
is red with white inside, the particular proposal was rejected. (Choosers will see proposals on 
the vertical axis.) 

 
EXAMPLE 1. Consider the square that is displayed in the lower left corner of the Graph 

shown above. Here, the Chooser made a suggestion of 20. This Chooser’s preferred outcome 
was 30. 

  
You have now reached the end of the instructions. The next page contains some questions 

concerning the experiment. When all participants have answered all questions correctly, we will 
proceed with the experiment. 
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QUESTIONS 
 

Please answer the following questions. THE VALUES USED IN SOME QUESTIONS DO 
NOT INDICATE WHAT YOU SHOULD DO IN THE EXPERIMENT. RATHER, THEY 
HAVE BEEN CHOSEN TO FACILITATE CALCULATIONS. 

 
1. Is the following statement correct? ‘In each period I am coupled with the same Chooser.’ 

 
2. Is the following statement correct? ‘I will observe the Chooser’s preferred position before I 
make my proposal.’ 

 
3. 
(A) What is the highest value the preferred outcome of a Chooser can take on? 
(B) What is the highest value a suggestion of a Chooser can take on? 
(C) What is the highest value a proposal of yours can take on? 

 
4. Consider a period in which the Chooser’s preferred outcome is 50. The Chooser chose to send 
a suggestion of 40. You made a proposal of 20, which was accepted by the Chooser. 
(A) What are your own earnings in this period? 
(B) How much does the Chooser to whom you are paired earn? 

 
5. Consider a period in which the Chooser’s preferred outcome is 90. The Chooser chose to send 
a suggestion of 100. You made a proposal of 0, which was accepted by the Chooser. 
(A) What are your own earnings in this period? 
(B) How much does the Chooser to whom you are paired earn? 

 
6. Consider a period in which the Chooser’s preferred outcome is 30. The Chooser chose to send 
a suggestion of 40. You made a proposal of 10, which was rejected by the Chooser. 
(A) What are your own earnings in this period? 
(B) How much does the Chooser to whom you are paired earn? 

 
When you are ready answering the questions, please raise your hand. 

 


