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Abstract

Internet auctions run by eBay and Yahoo! allow sellers to set up their

auctions with a Buy-Now option. Sellers set a price, termed a buy price, at

which a bidder may purchase the item and end the auction. This option is now

widely used on internet auctions. This might seem surprising at Þrst, since

setting a buy price is tantamount to imposing a price ceiling in the auction,

and this seems contrary to a seller�s interest. We formulate and analyze a

model of ascending bid auctions with a buy price. We assume two bidders

with symmetric, independent private values drawn from a uniform distribution.

The details of the model differ for the eBay and Yahoo! versions, since these

two sites implement the buy-now option differently. We characterize unique

symmetric equilibrium strategies for risk neutral bidders in both versions of

the buy-now mechanism. Expected seller revenue in equilibrium in the eBay

buy-now auction is less than in the ascending bid auction if any bidder types

accept the buy price. For the Yahoo! buy-now auction there exists an interval

of buy prices at the upper end of the support of values such that expected

revenue for the seller in equilibrium is equal to revenue in an English auction
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- a revenue equivalence result. Finally, we show that seller revenue may be

higher in a buy-now auction than in an English auction when bidders are risk

averse.

1 Introduction

The expansion of commerce conducted over the Internet has sparked a surge of in-

terest in auctions and new auction forms. Many new online auction sites appeared,

and quite a few subsequently disappeared. These online auctions use a variety of

formats and rules. In many cases online auctions have adapted procedures that had

been used for running auctions long before the Internet came into being. In a few

cases online auctions have introduced features which appear to be new and unique to

the online environment. Lucking-Reiley (2000) describes the wide variety of online

auction formats that were being used as of 1999.

An example of a new twist in online auction formats appears in Yahoo! and eBay

auctions. In 1999 Yahoo! introduced the Buy-Now ! feature into its ascending bid

auctions. The Buy-Now! feature allows the seller to set a price, termed a buy price,

at which any bidder may purchase the item at any time during the auction (for more

on this format see, http://auctions.yahoo.com/phtml/auc/us/promo/buynow.html).

This feature, in effect, allows the seller to post a maximum price for the item, since no

rational bidder would permit the bid price to rise above the buy price. In 2000 eBay

introduced its own version of a maximum price feature into its online auctions via the

Buy It Now option. In contrast to the Yahoo! format, eBay permits bidders to select

the buy price only at the opening of the auction, before any bids are submitted, or

in the case of an auction with a reservation price, before bids reach the reservation

price (see, http://pages.ebay.com/services/buyandsell/buyitnow.html). We use the

expression �buy-now auction� as the generic term for an ascending bid auction with

a buy price.

The buy-now auction has become quite popular in both Yahoo! and eBay auctions.

Table One lists the total number of current auctions and the number of buy-now
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auctions on eBay and Yahoo! in selected categories on a recent day (the categories

are similar, but not identical across the two auction sites). Overall, about 40% of

these eBay auctions and 66% of these Yahoo! auctions utilize the buy-now feature.

A recent article also cites a 40% Þgure for the fraction of eBay auctions that use the

buy-now feature (see Hof (2001)). Note that the total number of auctions on eBay

dwarfs the number of auctions on Yahoo!

Table One

Data on Buy-Now and All Auctions for Yahoo! and eBay

(data is for current auctions on March 27, 2002)

Yahoo!Auctions eBay Auctions

Category # buy-now total # # buy-now total #

Automobiles 157 186 662 2,378

Clothing 148 223 2,678 10,078

DVD Players 86 115 981 2,251

VCR�s 91 136 384 1,078

Digital Cameras 337 583 7,179 13,284

TV�s 23 39 596 2,073

Setting a maximum price in an auction may appear to be irrational for a seller.

After all, an ascending bid auction is intended to illicit high bids from potential

buyers, and putting a cap on these bids would seem to limit the seller�s expected

revenue. But there are at least two reasons why a buy-now auction might yield

greater revenue for the seller. First, a buy price may help reduce the extent of

uncertainty for some bidders. Consider a bidder whose value exceeds the buy price.

If the bidder waits then they may be able to acquire the item at a price less than the

buy price, but the bidder runs the risk of losing the auction (this would happen if

another bidder accepts the buy price, or if they are outbid in the ascending auction).

By accepting the buy price the bidder can ensure acquisition of the item at the buy
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price. A risk-averse bidder may opt to accept the buy price rather than face the

uncertainty regarding acquisition at a lower price. A seller may be able to exploit

this kind of bidder behavior by appropriately setting the buy price. A second reason

why a buy price might increase seller revenue involves a reduction in waiting time for

the winning bidder. Online ascending bid auctions often have a Þxed closing date;

Yahoo! and eBay auctions typically run for 7 days. Acceptance of a buy price may

permit a bidder to gain possession of the item several days earlier than would be

possible by waiting for the auction to close. The reduction in waiting time associated

with the buy now option may raise bidders� willingness to pay under this option

relative to the wtp when a winner gains possession after the auction close. A seller

may be able to exploit this increase in willingness to pay under the buy-now option

by appropriately setting the buy price.

In this paper we formulate and analyze a model of an ascending bid auction with a

buy-now feature. We utilize a symmetric independent private values framework with

a continuous distribution of values for bidders. We derive equilibrium results for a

version of the model with two bidders and uniformly distributed values. We compare

and contrast equilibrium results under the Yahoo! and eBay versions of the buy now

mechanism. We do not consider time discounting or any other cost of waiting in our

analysis. Instead, we focus on how introduction of the buy price alters the incentives

of bidders in the absence of costs of waiting, and on how equilibrium bidding behavior

with a buy price affects seller revenue.

We demonstrate several results. First, we characterize unique symmetric equilib-

rium strategies for bidders in the eBay version of the buy now mechanism. Equilib-

rium strategies involve a value cut-off, above which a bidder will accept the buy price,

and below which a bidder will reject the buy price and participate in the ascending

bid auction. If both bidders accept the buy price, then the winning bidder is selected

randomly. If bidders are risk neutral then in equilibrium (1) no bidder types accept

the buy price if it is in the upper half of the values support; all bidder types wait for

the ascending bid portion of the auction and the allocation is efficient, and (2) some

bidder types accept the buy price if it is in the lower half of the values support; the
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allocation is (ex ante) inefficient. Expected seller revenue in the buy now auction is

less than in the ascending bid auction if any bidder types accept the buy price. Next,

we characterize unique symmetric equilibrium strategies for risk neutral bidders in

the Yahoo! version of the buy now mechanism. The critical part of deriving equilib-

rium strategies involves characterizing a threshold function. This function speciÞes

the bid price (or, clock time) at which a buyer will accept the buy price, as a function

of the buyer�s value, for values above the buy price. This time may be either at the

opening of the auction, or after the opening. Second, we show a conditional revenue

equivalence result. There exists an interval of buy prices at the upper end of the

support of values such that the auction with a buy price yields the same expected

revenue for the seller as the ascending bid auction. This is an application of the

well-known revenue equivalence result for auction formats with risk neutral bidders

that yield efficient allocations. If buy prices are in the lower half of the values support

then the allocation is (ex ante) inefficient and seller revenue is less than revenue in

an ascending bid auction. Finally, we demonstrate how seller revenue is impacted

by bidder risk aversion for eBay buy-now auctions. We derive equilibrium results for

constant absolute risk averse (CARA) bidders and we show that a seller can earn

greater expected revenue with a buy-now auction that with an English auction.

We are aware of one prior analysis of an auction with a buy price. Budish and

Takeyama (2001) analyze an ascending bid auction with a buy price using a model

with two bidders, symmetric, independent private values, and with two possible val-

uations for each bidder. They demonstrate that (1) if bidders are risk neutral and

the seller sets the buy price optimally then the seller earns the same expected rev-

enue in an auction with a buy price as in the conventional ascending bid auction,

and (2) if bidders are risk averse and the seller sets the buy price optimally then the

seller can earn greater expected revenue in an auction with a buy price than in a

conventional ascending bid auction. Risk aversion can drive a high-value bidder to

accept a relatively high buy price rather than take the chance that the bid price will

rise above the buy price. The Budish and Takeyama analysis applies to the eBay
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buy-now mechanism, but not to the Yahoo! mechanism.

2 The Model

There are two bidders for a single item, whose values are independently and identically

distributed, according to a uniform distribution with support [v, v̄] and c.d.f. F .

Denote by vi the value of bidder i. Let B denote the buy-now price set by the seller.

We assume that v < B < v̄, since a seller would never wish to set B ≤ v , whereas
if B ≥ v̄ then no bidder will ever take it. Bidders are assumed to have a common

utility function u that depends on the monetary payoff received. Utility is assumed to

be strictly increasing, concave, and twice-differentiable, with u(0) = 0. This section

deals with the case when bidders are risk neutral; the next section considers risk

averse bidders.

Both the eBay and the Yahoo! buy-now auctions are modelled as clock auctions,

with a continuously rising bid price. The precise rules under which the buy now

option is exercised differ for the two auctions:

eBay: At the opening instant of the auction the bidders simultaneously decide

whether to exercise the buy now option. If both bidders reject the buy price then the

buy-now option disappears, and bidding proceeds according to an ascending clock

auction.1 If either bidder exercises the buy-now option, then the auction ends, the

bidder exercising the option wins the item and pays the seller B. If both bidders

choose the buy-now option, then the winner is randomly assigned.

Yahoo!: Bidding proceeds as in an ascending clock auction, with the buy-now option

remaining in effect so long as the auction is open. If either bidder exercises the buy-

now option at any point, then the auction ends, the bidder exercising the option wins

the item and pays the seller B.

1Here we deal with auctions in which there is no reserve, in which case the buy-now option

disappears as soon as a bid is placed. In eBay auctions with a reserve, the buy-now option disappears

only once there is a bid placed about the reserve price.
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2.1 Buy It Now (eBay)

In the eBay auction a bidder�s strategy tells him, for each of his possible values,

whether to exercise the buy-now option or whether to wait. (We will assume that if

neither bidder chooses to buy now, then in the ascending clock auction that follows,

both bidders follow their dominant strategy of remaining in the auction as long as

their value is above the bid price.) We focus on equilibria in �cutoff strategies.� A

cutoff strategy for bidder is a value c ∈ [v, v̄] such that he accepts the buy price
if his value exceeds c but waits if his value is below c. Suppose that bidder i�s value

is vi and his rival�s cutoff strategy is c. If bidder i accepts the buy price, he wins

the auction if either his rival waits (which occurs with probability F (c)) or his rival

accepts the buy price but bidder i wins the coin toss (which occurs with probability
1
2
[1− F (c)]). Bidder i�s expected payoff is

U b(vi, c) =

·
1

2
(1− F (c)) + F (c)

¸
u(vi −B).

If bidder i waits, then he wins the auction only if his rival also waits (i.e., vj < c)

and his value is higher than his rival�s (i.e., vj < vi). His expected payoff is

Uw(vi, c) =

Z min{vi,c}

v

u(vi − vj)dF (vj).

A cutoff value c∗ is a symmetric equilibrium if Uw(vi, c∗) > U b(vi, c
∗) for all

vi ∈ [v, c∗) and Uw(vi, c∗) < U b(vi, c∗) for all vi ∈ (c∗, c∗], i.e., given that bidder j uses
the cutoff value c∗ then it�s optimal for bidder i to use the same cutoff.

Proposition 1 indicates that equilibrium and efficiency results can be divided into

two cases, depending on whether the buy price is relatively high or not.

Proposition 1: Suppose the bidders are risk neutral.

(i) If B ∈ [1
2
v + 1

2
v̄, v̄) then the buy price is never accepted by a bidder (i.e., the

unique equilibrium cutoff value is c∗ = v̄).

(ii) If B ∈ (v, 1
2
v + 1

2
v̄) then there is a unique symmetric equilibrium cutoff value of

c∗ =
B(v̄ − 2v) + v2

v̄ −B , (1)
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and the cutoff value is increasing in the buy price. Equilibrium is inefficient since the

item is awarded to the low-value bidder with positive probability.

Proposition 1 indicates that the buy-now auction is inefficient in equilibrium as

long as the buy price is set low enough so that some bidder types would be willing to

accept. The inefficiency is similar to the inefficiency that results when a single item

is offered for sale at a Þxed price to multiple buyers. If there is no mechanism to

put the high-value buyer at the head of the queue of buyers then there is a positive

probability that the high-value buyer will not receive the item. The only case in

which the buy-now auction is (ex ante) efficient is when the buy price is set high

enough so that no bidder types will accept it (case (i) in Proposition 1).

Proposition 2: Suppose that bidders are risk neutral. If the buy price is set so

that there is a positive probability that B will be accepted in equilibrium (i.e., B ∈
(v, 1

2
v + 1

2
v̄) ) then expected seller revenue in equilibrium is less than expected seller

revenue in an English auction.

Note that results for a model with a continuous distribution of values differ from

those of the Budish and Takeyama (2001) model with two possible values. In BT the

seller can set a buy price so that a high-value buyer is willing to accept and expected

seller revenue equals expected revenue in an English auction. With a continuous

distribution of values, any buy price that is accepted with positive probability yields

lower expected seller revenue than an English auction.

2.2 Buy-Now! (Yahoo!)

The Yahoo! buy-now auction involves more complex strategies for bidders than the

eBay buy-now auction. For the eBay version we were able to characterize the decision

to accept the buy price based on a simple cut-off strategy. In contrast, for the Yahoo!

version a bidder�s strategy must indicate at what point during the auction the bidder

will accept the buy price, conditional upon their value. We simplify the analysis of

the Yahoo! version by supposing that if a bidder�s value is less than B, then he
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never chooses to �buy it now� and he exits as soon as the price reaches his value;

recall that this is a dominant strategy in the English auction. We focus on how

bidders with values above B choose the bid price (correspondingly, the time on the

auction clock) at which to accept the buy price. We say that t : [B, v̄] → [v, B] is

a threshold strategy if either (i) t is continuous and decreasing on [B, v̄], or (ii)

there is a z ∈ (B, v̄) such that t is continuous and strictly decreasing on [B, z), but t
jumps down to t(v) = v for v ∈ (z, v̄].
A threshold strategy has the following interpretation: if t(v) > v then a bidder

with value v remains in the auction until the bid price rises to t(v), at which point

he elects to buy-it-now; if t(v) = v then the bidder elects to buy-it-now immediately

at the auction open. Let [t, t̄] denote the range of threshold values for which t(v) is

strictly decreasing.

Suppose bidder 2 follows the threshold strategy t(v2) shown in Figure 1 and bidder

1 chooses the threshold t1. If bidder 2�s value v2 is below t1, then bidder 2 drops out

when the price reaches his value. Bidder 1 wins and pays v2. If bidder 2�s value is

above t1 but below B, then bidder 1 exercises the buy now option when the price

reaches t1 (and before bidder 2 drops out). If bidder 2�s value is between B and

t−1(t1), then bidder 2�s threshold is greater than t1, and bidder 1 exercises the buy

now option when the price reaches t1 (and before bidder 2 exercises the option).

Finally, if bidder 2�s value is above t−1(t1), he chooses a threshold less than t1, and

bidder 2 exercises the buy-now option at a bid price below t1.

Figure 1 goes here.

We now formally deÞne the bidder�s payoff functions: If a bidder�s value is v, he

chooses the threshold �t, and the other bidder follows the threshold strategy t (one

without a jump down) then the bidder�s expected utility is

U(�t, v; t) =


R �t
v
u(v − x)dF (x) + [F (t−1(�t))− F (�t)]u(v −B) if �t ∈ [t, t̄]R �t

v
u(v − x)dF (x) + [1− F (�t)]u(v −B) if �t < t.

Note that if �t < t then the bidder wins for sure, paying the other bidder�s value when

the value is less than �t and paying B otherwise.
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We say that t is a (symmetric) equilibrium in threshold strategies if for

each v ∈ [B, v̄] we have

U(t(v), v; t) ≥ U(�t, v; t) ∀�t ∈ [v,B].

In other words, for each value v a bidder�s optimal threshold is t(v) when all the other

bidders follow strategy t.

Proposition 3: If bidders are risk neutral then there is a unique symmetric equilib-

rium in threshold strategies that are continuous and differentiable (except possibly

at one point where the threshold strategy jumps down). If B ≥ (v̄ + v)/2 then the
equilibrium threshold strategy satisÞes t(v) = 2B − v. If B < (v̄ + v)/2, then

t(v) =

 2B − v if v ≤ v2+B(v̄−2v)
v̄−B

v otherwise.

Figure 2(a) below shows the equilibrium threshold function without a jump down,

and is useful for comparing the seller�s expected revenue in the Yahoo! buy-now

auction to an English auction. Let bidder 1�s value v1 be Þxed and assume that

v2 ≤ v1. If v1 ≤ B, then seller revenue is v2 in both the Yahoo! buy-now and the

English auction. If v1 > B then revenue is still v2 in both auctions if v2 ≤ 2B − v1.
Hence, if revenue is different between the two auctions, then it must be because

revenues differ when v2 ∈ [2B−v1, v1], i.e., revenues must differ in the heavily shaded
region. However, the seller�s expected revenue in the English auction, conditional on

v2 ∈ [2B − v1, v1], is2 Z v1

2B−v1
v2

1

v1 − (2B − v1)dv2 = B.

Thus, conditional on v2 ∈ [2B − v1, v1] the seller gets B for sure in the Yahoo! buy-

now auction, while he gets the same amount in expectation in the English auction.

We have show that for each Þxed v1, given v2 ≤ v1, the seller�s expected revenue is
2Given v2 ∈ [2B − v1, v1], then v2 is conditionally distributed U [2B − v1, v1]. Since the mean of

the U [a, b] density is a+b2 , the conditional expectation of v2 is B.
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the same in both auctions. Since this is true for each v1, the seller�s unconditional

expected revenue must be the same for both auctions. This establishes Proposition

4(i).3

Figure 2 goes here.

The revenue properties of the Yahoo! buy-now auction when the threshold func-

tion has a jump down can be understood by considering Figure 2(b). The key ob-

servation is that the value at which a bidder�s threshold function jumps down in the

Yahoo! buy-now auction is the same as the bidder�s cutoff value in the eBay buy-now

auction. Again, Þx v1 and assume that v2 ≤ v1. If v1 ≤ v2+B(v̄−2v)
v̄−B , then the eBay

and Yahoo auctions both generate the same expected revenue to the seller; in par-

ticular, both yield the same expected revenue as in the English auction. (If v1 > B

the equality of revenues follows from the argument in above.) If v1 >
v2+B(v̄−2v)

v̄−B then

the seller�s revenue is B in both auctions. Since expected revenue is the same for

both auctions for each Þxed v1, the seller�s unconditional expected revenue is also the

same in both auctions. This establishes Proposition 4(iii). Proposition 4(ii) follows

immediately from Propositions 2 and 4(iii).

Proposition 4: Assume that the bidders are risk neutral.

(i) If B ≥ (v̄ + v)/2 then the Yahoo! buy-now auction yields the same expected

revenue as the English auction.

(ii) If B < (v̄ + v)/2 then the Yahoo! buy-now auction yields less revenue than the

English auction.

(iii) The Yahoo! buy-now auction yields the same revenue as the eBay buy-now

auction.

While the Yahoo! and eBay buy-now auctions both yield the same expected

revenue, the ex post outcomes may be quite different. If B ≥ (v̄ + v)/2 then the

buy-now price is accepted for some value combinations in the Yahoo! auction while

3Alternatively, Proposition 4(i) can be seen as an application of the well-known revenue equiva-

lence property of efficient auctions.
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it is never accepted in the eBay buy-now auction. If B < (v̄ + v)/2 then the set of

value combinations for which the buy-now price is accepted immediately is the same

in both auctions; in the Yahoo! auction, however, the buy-now price may also be

accepted after some delay.

3 Bidder Risk Aversion

Bidder risk aversion has no effect on behavior in English ascending bid auctions. It

is a dominant strategy for a risk averse bidder to remain in the auction until the

bid price equals the bidder�s value, just as it is for a risk neutral bidder. Therefore,

expected seller revenue in the ascending bid auction is the same regardless of bidder

risk preferences. But risk aversion does affect behavior in a buy-now auction. In

this section we provide several results on the effects of bidder risk aversion on bidder

behavior and on seller revenue. We focus on the case of constant absolute risk aversion

(CARA), since preferences of this type yield tractable equilibrium conditions.4 We

suppose that both bidders have CARA utility of the form, u(x) = 1 − e−αx, where
α > 0 is the index of bidder risk aversion.

3.1 Buy It Now (eBay)

We Þrst examine bidder risk aversion in the eBay buy-now auction. The following

proposition describes equilibrium bidder behavior.

Proposition 5: Assume the bidders are risk averse with index of risk aversion α > 0.

For each B ∈ [v, v̄] there is a unique symmetric equilibrium in cutoff strategies.

Furthermore, there is a critical value �vα ∈ (v, v̄) such that:
(i) if B ∈ (v, �vα) then the symmetric equilibrium cutoff value satisÞes c∗ ∈ (B, v̄) and
is strictly increasing in B.

4We explored the properties of constant relative risk averse (CRRA) preferences in this model.

We found that for some buy prices, a symmetric equilibrium in cutoff strategies does not exist for

the eBay buy-now auction. If an equilibrium exists, then it must be of some alternative form.
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(ii) if B ∈ [�vα, v̄] then the symmetric equilibrium cutoff value is c∗ = v̄, i.e., the

buy-now price is never accepted by a bidder.

The following proposition indicates how risk aversion changes the bidders� willing-

ness to accept the buy price. In equilibrium, risk averse bidders choose lower cutoff

values than risk neutral bidders, i.e., they accept the buy price, compared to the case

of risk neutral bidders.

Proposition 6: Let �vα be the critical value given in Proposition 5. If B ∈ (v, �vα)
then the symmetric equilibrium cutoff value is strictly lower when bidders are risk

averse with index of risk aversion α than if bidders are risk neutral. If B ∈ [�vα, v̄)
then the symmetric equilibrium cutoff is c = v̄ whether bidders are risk averse or risk

neutral.

Proposition 7: If bidders have CARA utility with index of risk aversion α > 0

then there exists a buy price in the eBay buy-now auction such that expected seller

revenue exceeds expected revenue in the English ascending bid auction.

Table Two provides numerical calculations of the optimal (expected revenue max-

imizing) buy price for a seller, for increasing indices of bidder risk aversion. Note that

the optimal buy price rises as bidder risk aversion increases; the equilibrium cutoff

value becomes closer to the buy price as bidder risk aversion increases.

Table Two

Optimal Buy Price for Seller
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(CARA Bidders)*

Index of Bidder

Risk Aversion (α)

Buy

Price

Cutoff

Value

Seller

Revenue

% Gain

in Revenue

0 − − 133.3 −
0.05 154.8 174.8 138.1 3.5%

0.1 159.9 172.9 141.0 5.7%

0.5 167.8 171.1 145.5 9.1%

2.0 169.9 170.8 146.7 10.0%

* Two bidders with iid values uniformly distributed on [100,200].

3.2 Buy-Now! (Yahoo!)

INCOMPLETE

4 Appendix

Proof of Proposition 1: If bidder i accepts the buy price, then his expected payoff

when his rival uses the cutoff strategy c, is

U b(vi, c) =

·
1

2
(1− F (c)) + F (c)

¸
u(vi −B) =

(1
2
v̄ + 1

2
c− v)

v̄ − v u(vi −B),

whereas if he waits then his expected payoff is

Uw(vi, c) =

Z min{vi,c}

v

u(vi − vj)dF (vj) = 1

v̄ − v
Z min{vi,c}

v

u(vi − vj)dvj .

Clearly, a necessary condition for c to be an interior equilibrium cutoff value is

that U b(c, c) = Uw(c, c).5 Since bidders are risk neutral, this equality is equivalent

to,

1

2
(v̄ + c− 2v)(c−B) =

Z c

v

(c− vj)dvj = 1

2
(c− v)2.

5If UB(c, c) > UW (c, c) then by the continuity of UB and UV we have UB(v0, c) > UW (v0, c) for

some v0 ∈ (B, c), which contradicts that c is a cutoff equilibrium. If UB(c, c) < UW (c, c) then by the
continuity of UB and UV we have UB(v0, c) < UW (v0, c) for some v0 ∈ (c, v̄), again a contradiction.
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Solving for c yields

c∗ =
B(v̄ − 2v) + v2

v̄ −B ,

which is the value cut-off indicated in part (ii) of the proposition. The condition,

v < B < 1
2
v + 1

2
v̄ implies v < c∗ < v̄, and hence F (c∗) < 1.

We now show for B ∈ [v, 1
2
v + 1

2
v̄) that c∗ as given above is an equilibrium cutoff

value. It�s easy to verify that U b(vi, c∗) is linear in vi, Uw(vi, c∗) is convex in vi for

vi < c
∗, and Uw(vi, c∗) is linear in vi for vi > c∗. Furthermore,

∂U b(vi, c
∗)

∂vi

¯̄̄̄
vi=c∗

=
1

2
(1 + F (c∗)) > F (c∗) =

∂Uw(vi, c
∗)

∂vi

¯̄̄̄
vi=c∗

,

which means that the slope of the expected payoff function from accepting the buy

now price is steeper at vi = c∗ than the expected payoff function from waiting. These

facts imply that Uw(vi, c∗) > U b(vi, c
∗) for vi < c∗ and Uw(vi, c∗) < U b(vi, c

∗) for

vi > c
∗, i.e., c∗ is a symmetric equilibrium. This establishes Proposition 1(ii).

If B ∈ [1
2
v + 1

2
v̄, v̄] then c∗ ≥ v̄ (for c∗ given above) and hence there is no interior

equilibrium cutoff. Clearly v is not an equilibrium cutoff since for vi < B we have

Uw(vi, v) = 0 > U b(vi, v) =
1
2
(vi − B) for vi < B. We now show that v̄ is an

equilibrium. We have U b(vi, v̄) = vi −B and

Uw(vi, v̄) =

Z vi

v

(vi − vj)dF (vj) = (vi − v)2
2(v̄ − v) .

It is straightforward to show that Uw(vi, v̄) > U b(vi, v̄) for all vi < v̄. This establishes

(i). ¤

Proof of Proposition 2: Let ∆ be the difference between expected revenue in the

buy-now auction and a standard English auction. Let c∗ be the symmetric equilib-

rium cutoff value. This is in the interior of the values support, given the hypothesis

regarding B in Proposition 2. If both bidders have a value less than or equal to c∗

then seller revenue is the same in both types of auction; revenue is equal to the lower

of the values of the two bidders. If one or both bidders has a value above c∗ then the
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seller receives B in the buy now auction. The difference in revenue between the two

types of auction is B minus the lower of the two values of the bidders. So,

∆ = 2

Z v̄

c∗

·Z v1

v

(B − v2)dF (v2)
¸
dF (v1)

After integrating the right-hand side

∆ =
v̄ − c∗
3(v̄ − v)2

¡
3
£
B(v̄ − 2v) + v2¤− v̄2 − v̄c∗ + 3Bc∗ − c∗2¢ .

The expression in square brackets above is equal to (v̄ − B)c∗, according to the
deÞnition of c∗ in equation (1). Substituting for the expression in curly brackets and

simplifying yields

∆ = − (v̄ − c
∗)3

3(v̄ − v)2 < 0,

since c∗ < v̄ for B ∈ (v, 1
2
v + 1

2
v̄). ¤

Proof of Proposition 3: We beginning by writing the payoff function when the

threshold function has a jump down. If a bidder�s value is v, he chooses the threshold

�t, and every other bidder follows the threshold strategy t (which jumps down to v at

z), then the bidder�s expected utility is

U(�t, v; t) =



R �t
v
u(v − x)dF (x) + [F (B)− F (�t)]u(v −B) if �t > t̄R �t

v
u(v − x)dF (x) + [F (t−1(�t))− F (�t)]u(v −B) if �t ∈ [t, t̄]R �t

v
u(v − x)dF (x) + [F (t−1(t))− F (�t)]u(v −B) if �t ∈ (v, t)

u(v −B)(F (z) + 1
2
(1− F (z))) if �t = v.

The proof proceeds in several steps.

Step I: We Þrst show that a (symmetric) equilibrium threshold function satisÞes

t(B) = B. Suppose to the contrary that a bidder with value v = B chooses a

threshold t(B) < B. Then

U(t(B), B; t) =

Z t(B)

v

u(B − x)dF (x) <
Z B

v

u(B − x)dF (x) = U(B,B; t),

16



where the inequality is strict since u(B−x) > 0 for x ∈ [t(B), B) and since dF (x) > 0.
In other words, a bidder with value v = B obtains a higher payoff choosing a threshold

of B than of t(B) when the other bidder follows t. This contradicts that t is a

symmetric equilibrium.

Step II: Let t be an equilibrium threshold strategy which is differentiable (except at

one point �v, if t jumps down at �v). We show that t(v) = 2B− v for v ∈ [B, v̄] if t has
no jump and t(v) = 2B − v for v ∈ [B, �v) if t jumps down at �v.
Consider the case where t jumps down at �v. For �v ≤ �v deÞne

U(�v, v) =

Z t(�v)

v

(v − x) 1

v̄ − vdx+ (v −B)
�v − t(�v)
v̄ − v

to be a bidder�s expected payoff when his value is v, he chooses a threshold as though

his value was �v, and the other bidder follows t. For v ∈ (B, �v) we have v̄ < t(v) < B;
hence a necessary condition for t to be an equilibrium is that dU(�v,v)

d�v
|�v=v = 0 for

v ∈ (B, �v), i.e.,

Bt0 − tt0 + v −B = 0. (2)

Integrating (2) yields

−t2 + 2Bt+ v2 − 2Bv = C,

where C is a constant. The boundary condition that t(B) = B implies that C = 0,

and thus

(v − t)(t− (2B − v)) = 0.

There are two solutions for the threshold strategy: (i) t(v) = 2B−v and (ii) t(v) = v.
The second solution, however, can be discarded since a threshold strategy must satisfy

t(v) ≤ B but we have v > B. The proof for the case where t has no jump is

straightforward and therefore omitted.

Step III: Let t be an equilibrium threshold strategy which is differentiable (except at

one point �v, if t jumps down at �v). We show that if B ≥ (v̄+v)/2 then t(v) = 2B−v

17



for v ∈ [B, v̄] and if B < (v̄ + v)/2 then t jumps down at �v = v2+B(v̄−2v)
v̄−B , i.e.,

t(v) =

 2B − v if v ≤ v2+B(v̄−2v)
v̄−B

v otherwise.

Suppose that t jumps down at z. DeÞne the function

L(v) =

Z 2B−v

v

(v − x) 1

v̄ − vdx+ (v −B)
Z min{v,z}

2B−v

1

v̄ − vdx

to be the payoff to a bidder when his value is v, his threshold is 2B− v, and his rival
follows t. Simplifying, we obtain

L(v) =
1

v̄ − v
·
(v −B)(min{v, z}− v) + 1

2
(v − v)2

¸
.

DeÞne

R(v) =
1

2

v̄ − z
v̄ − v (v −B) +

z − v
v̄ − v (v −B)

to be the payoff to a bidder when his value is v, his threshold is v, and his rival follows

t.

A necessary condition for t to jump down at z is that when a bidder�s value is

z then he is indifferent to a threshold of 2B − z and a threshold of v, i.e., that
L(v) = R(v) for v = z. If L(z) > R(z), for example, then, since L and R are both

continuous in v, there is an ε > 0 such that L(z + ε) > R(z + ε), and hence a bidder

whose value is z+ε obtains a higher payoff by deviating from t and setting a threshold

of 2B − (z + ε), rather than following t and choosing a threshold of v. L(z) = R(z)
implies z = v2+B(v̄−2v)

v̄−B . It�s easy to see that z > B for B > v. If B > (v̄ + v)/2 then

z > v̄, which contradicts that t jumps down for some z ∈ (B, v̄). If B < (v̄ + v)/2

then z ∈ (B, v̄).
Step IV: We have shown that if t is an equilibrium in threshold strategies which

are continuous and differentiable (except at possibly one point), then it is as given in

Proposition 3. We show that the threshold strategy given in Proposition 3 is indeed

an equilibrium, and therefore an equilibrium exists.
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Case (i): Suppose B < (v̄ + v)/2, and hence t jumps down at �v, and suppose the

bidder�s value is v ∈ [B, �v]. The bidder�s payoff, if he chooses a threshold as though
his true value were �v ∈ [B, �v], is

U(�v, v) =

Z 2B−�v

v

(v − x) 1

v̄ − vdx+ (v −B)
Z �v

2B−�v

1

v̄ − vdx.

Note that

dU(�v, v)

d�v
=

1

v̄ − v (v − �v),

and

d2U(�v, v)

d�v2
=

−1
v̄ − v < 0.

Hence U(�v, v) is concave in �v (for Þxed v), and �v = v maximizes U(�v, v) on the interior

of [B, �v]. Equivalently, a threshold of t = 2B − v maximizes the bidder�s payoff for
thresholds in [2B− �v, B]. We now show that t = 2B−v maximize the bidder�s payoff
for all thresholds in [0, B].

Clearly a threshold of t ∈ (0, 2B − �v) is never optimal. The bidder�s expected
payoff with a threshold of �t ∈ (0, 2B − �v) isZ �t

v

(v − x) 1

v̄ − vdx+ (v −B)
Z �v

�t

1

v̄ − vdx,

which is strictly less thanZ 2B−�v

v

(v − x) 1

v̄ − vdx+ (v −B)
Z �v

2B−�v

1

v̄ − vdx.

In particular, if the bidder raises his threshold to from �t to 2B − �v this leaves the
probability of winning unchanged, but reduces the expected price.

Finally, we show that when the bidder�s value is v ≤ �v, then a threshold of t = v
is not optimal. Choosing a threshold of t = 2B − v the bidder obtains

L(v) =
1

v̄ − v
·
(v −B)(�v − v) + 1

2
(v − v)2

¸
,

whereas choosing a threshold of t = v he obtains

R(v) =
1

2

v̄ − �v
v̄ − v (v −B) +

�v − v
v̄ − v (v −B).
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Clearly, L(v) is concave in v andR(v) is linear in v. Furthermore, L(B) = 1
2
(B−v)2 >

R(B) = 0 and L(�v) = R(�v), and therefore L(v) > R(v) for v < �v and L(v) < R(v)

for v > �v . Hence, the threshold t = 2B − v is optimal for a bidder with a value
v ∈ [B, �v], and a threshold of t = v is optimal for a bidder with a value v ∈ [�v, v̄]. ¤

Proof of Proposition 5: If bidder i accepts the buy price then his expected utility,

when his rival uses the cutoff strategy c, is

U b(vi, c) =

·
1

2
(1− F (c)) + F (c)

¸
u(vi −B) = v̄ + c− 2v

2(v̄ − v) [1− e
−α(vi−B)],

whereas if he waits then his expected utility is

Uw(vi, c) =

min{vi,c}Z
v

u(vi − vj)dF (vj)

=
min{vi, c}− v − e−αvi

α
(eαmin{vi,c} − eαv)

v̄ − v .

Note that u(vi − vj) ≥ 0 for vj ∈ [v,min{vi, c}] and hence Uw(vi, c) ≥ 0.
We Þrst show that c = v is a symmetric (boundary) equilibrium if and only if B =

v. In particular, c = v is a symmetric boundary equilibrium if U b(vi, v) > Uw(vi, v)

∀vi ∈ (v, v̄]. But U b(vi, v) > 0 ∀vi ∈ (v, v̄] implies B = v.
A necessary condition for c to be a symmetric interior equilibrium cutoff value is

that U b(c, c) = Uw(c, c). This equality is equivalent to

1

2
(v̄ + c− 2v)[1− e−α(c−B)] = c− v − 1

α
+
1

α
e−α(c−v),

or

eαB =
(αv̄ − αc + 2)eαc − 2eαv

α(v̄ + c− 2v) .

It�s convenient to solve for the buy-now price B as a function of the cutoff value c.

We obtain

B =
1

α
ln

·
(αv̄ − αc+ 2)eαc − 2eαv

α(v̄ + c− 2v)
¸
.
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Let λ(c) be the function inside the square brackets and deÞne µ(c) = 1
α
lnλ(c). Then

B = µ(c).

Proof of (i): Let �vα = µ(v̄) be the critical value given in the Proposition. We begin

by establishing some properties of µ(c). It�s easy to verify that µ(v) = v. To see that

µ is strictly increasing in c observe that

µ0(c) =
1

α

λ0(c)
λ(c)

,

where

λ0(c) =
eαc
©
α(v̄2 − c2) + 2c− 2v(1 + αv̄ − αc)− 2

α

ª
+ 2

α
eαv

(v̄ + c− 2v)2 .

Clearly λ(c) > 0 for c ∈ [v, v̄]. To see that λ0(c) > 0 also, deÞne g(c) as

g(c) = eαc
½
α(v̄2 − c2) + 2c− 2v(1 + αv̄ − αc)− 2

α

¾
,

so that

λ0(c) =
g(c) + 2

α
eαv

(v̄ + c− 2v)2 .

Since g0(c) = eαcα2 (v̄ − c) (v̄ + c− 2v) ≥ 0, then

g(c) ≥ g(v) = eαv
½
α(v̄2 − v2)− 2vα(v̄ − v)− 2

α

¾
,

and hence

λ0(c) ≥ eαv
©
α(v̄2 − v2)− 2vα(v̄ − v)− 2

α

ª
+ 2

α
eαv

(v̄ + c− 2v)2 =
eαvα(v̄ − v)2
(v̄ + c− 2v)2 > 0,

for c ∈ [v, v̄]. Thus µ is strictly increasing in c.
Finally, we show that µ(c) < c for c > v, i.e.,

µ(c) =
1

α
ln

·
(αv̄ − αc+ 2)eαc − 2eαv

α(v̄ + c− 2v)
¸
< c.

Equivalently, we need to establish that

(αv̄ − αc+ 2)eαc − 2eαv
α(v̄ + c− 2v) < eαc.
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Rearranging this expression yields

−α(c− v̄) + 1 < e−α(c−v̄).

However, this inequality holds for c > v since ex > x + 1 for x 6= 0.6 In particular,
choosing x = −α(c− v) yields the result.
In sum, we have shown that µ(v) = v, µ(c) is strictly increasing in c on [v, v̄], and

µ(c) < c ∀c > v. In particular, �vα = µ(v̄) < v̄. These facts imply c = µ−1(B) is well-
deÞned and strictly increasing inB on [v, �vα]. This establishes that for eachB ∈ [v, �vα]
there is a unique c ∈ (v, v̄) satisfying the necessary condition U b(c, c) = Uw(c, c).

Let B ∈ (v, �vα) and let c = µ−1(B). Then c ∈ (v, v̄). We show that c is a

symmetric equilibrium in cutoff strategies, i.e., if vi ∈ [v, c) then Uw(vi, c) > U b(vi, c)
and if vi ∈ (c, v̄] then U b(vi, c) > Uw(vi, c). We establish this by showing that U b(vi, c)
is everywhere steeper than Uw(vi, c). Hence they cross at vi = c, with U b below Uw

for vi ∈ [v, c) and U b above Uw for vi ∈ (c, v̄]. We have
∂U b(vi, c)

∂vi
=
v̄ + c− 2v
2(v̄ − v) αe

−α(vi−B),

and

∂Uw(vi, c)

∂vi
=


1
v̄−v [1− e−α(vi−v)] if vi ≤ c

1
v̄−v [e

−α(vi−c) − e−α(vi−v)] if vi > c.

Note that Uw(vi, c) is differentiable at vi = c. Note also that for vi ∈ [c, v̄) that

eαB = λ(c) >
2eαc − 2eαv
α(v̄ + c− 2v) .

Rearranging yields

α(v̄ + c− 2v)
2(v̄ − v) eαB >

eαc − eαv
v̄ − v ,

6Let f(x) = ex − (x + 1). Since f 0(x) = ex − 1 and f 00(x) = ex > 0, this means that f has a

global minimum at x = 0 where f(0) = 0.
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which implies for vi ∈ [c, v̄) that
∂U b(vi, c)

∂vi
=
v̄ + c− 2v
2(v̄ − v) αe

−α(vi−B) >
1

v̄ − v [e
−α(vi−c) − e−α(vi−v)] = ∂Uw(vi, c)

∂vi
.

We have, in particular for vi = c that

∂U b(vi, c)

∂vi

¯̄̄̄
vi=c

>
∂Uw(vi, c)

∂vi

¯̄̄̄
vi=c

.

For vi < c, then U b(vi, c) is strictly concave in vi and Uw(vi, c) is strictly convex in

vi. Hence this same inequality holds for vi < c. This establishes that c = µ(B) is the

only interior symmetric equilibrium.

We now show that if B ∈ (v, �vα) then there is no symmetric boundary equilibrium.
Since B > v then c = v is not a symmetric equilibrium (see above). To see that

c = v is not a symmetric equilibrium, note that by construction U b(v̄, v̄) = Uw(v̄, v̄)

when B = �vα. Since dUb(v̄,v̄)
dB

< 0 and dUw(v̄,v̄)
dB

= 0, then for B < �vα we have

U b(v̄, v̄) > Uw(v̄, v̄). The continuity of U b and Uw implies there is an ε > 0 such that

U b(vi, v̄) > U
w(vi, v̄) for ∀vi ∈ (v̄ − ε, v̄]. Thus, v̄ is not a symmetric equilibrium.

Proof of (ii): Suppose that B ≥ �vα. Then

eαB ≥ λ(v̄) = eαv̄ − eαv
α(v̄ − v) . (4)

Let x = α(v̄ − vi) ≥ 0; this inequality is strict if vi < v̄. Using the deÞnition of x,

eαv̄ = eαviex ≥ eαvi(x+ 1) = eαvi(α(v̄ − vi) + 1 (5)

where the inequality follows from ex ≥ x + 1, for x ≥ 0. Combining inequalities (4)
and (5) yields

eαB ≥ eαvi(α(v̄ − vi) + 1)− eαv
α(v̄ − v) ,

or

e−α(vi−B) ≥ α(v̄ − vi) + 1− e−α(vi−v)
α(v̄ − v) .

23



This implies

U b(vi, v̄) = 1− e−α(vi−B) ≤ 1

(v̄ − v) [vi − v −
1

α
+
1

α
e−α(vi−v)] = Uw(vi, v̄).

The inequality is strict for every vi ∈ [v, v̄] if B > �vα; the inequality is strict for vi < v̄
if B = �vα. ¤

Proof of Proposition 6: By Proposition 1, when bidders are risk neutral and

B ∈ (v, 1
2
v + 1

2
v̄), then the unique symmetric equilibrium cutoff value is

c =
B(v̄ − 2v) + v2

v̄ −B .

It will be convenient to express this in inverse form:

B =
cv̄ − v2
v̄ + c− 2v

or equivalently,

eαB = n(c) = e
α(cv̄−v2)
v̄+c−2v .

>From the proof of Proposition 5, when bidders are risk averse and B ∈ (v, �vαα), the
symmetric equilibrium cutoff value is

eαB = λ(c) =
(αv̄ − αc+ 2)eαc − 2eαv

α(v̄ + c− 2v) .

To establish the proposition it is sufficient to show that λ(c) > n(c) for c ∈ (v, v̄].
Let �λ(c) = α(v̄ + c − 2v)λ(c) and �n(c) = α(v̄ + c − 2v)n(c). The inequality

λ(c) > n(c) is equivalent to �λ(c) > �n(c). Note that �λ(v) = �n(v) = α(v̄ − v)eαv. The
derivatives of �λ(c) and �n(c) are,

�λ
0
(c) = eαc[α2(v̄ − c) + α]

and

�n0(c) = e
α(cv̄−v2)
v̄+c−2v

·
α+

α2(v̄ − v)2
v̄ + c− 2v

¸
.

We will show that �λ
0
(c) > �n0(c) by establishing several claims that lead to this result.

Let z = v̄ − v > 0 and let y = c− v ∈ [0, z].
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Claim #1:

αy2

y + z
+ 1 =

y + z + αy2

y + z
≥ y + z + αz2

(y + z)(1 + α(z − y))
with strict inequality for y < z. This claim follows from algebraic manipulation.

Claim #2:

e
αy2

y+z ≥ αy2

y + z
+ 1

with strict inequality for y > 0. This claim follows from the properties of the expo-

nential function.

Claim #3:

e
αy2

y+z >
y + z + αz2

(y + z)(1 + α(z − y))
for y = c− v ∈ [0, z]. This claim follows from claims 1 and 2.

Using the deÞnitions of y and z, Claim #3 may be expressed as

e
α(c−v)2
v̄+c−2v >

v̄ + c− 2v + α(v̄ − v)2
(v̄ + c− 2v)(1 + α(v̄ − c)) .

This inequality implies that

�λ
0
(c) = eαc[α2(v̄ − c) + α] > eα(cv̄−v

2)
v̄+c−2v [α+

α2(v̄ − v)2
v̄ + c− 2v ] = �n

0(c),

which is the desired result. ¤

Proof of Proposition 7: It will be convenient to express the buy price as a function

of the equilibrium cutoff value, as in the proof of Proposition 5. Let B = µ(c) , where

the function µ is deÞned in (3). The function µ is differentiable and increasing in c.

If c ∈ (v, v) then B = µ(c) is such that some bidder types will accept the buy price
in equilibrium.

Seller expected revenue in the buy-now auction with risk averse bidders may be

expressed as a function of the equilibrium cutoff value, c:

R(c) = 2

·Z c

v

µZ v1

v

v2dF (v2)dF (v1)

¶
+

Z v

c

µZ v1

v

µ(c)dF (v2)dF (v1)

¶¸
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This simpliÞes to,

R(c) =
2

(v̄ − v)2
·Z c

v

µ
1

2
v21 −

1

2
v2
¶
dv1 + µ(c)

Z v

c

(v1 − v)dv1
¸

or,

R(c) =
2

(v̄ − v)2
·
1

6
c3 − 1

2
v2c+

1

3
v3 + µ(c)

µ
1

2
v̄2 − v(v − c)− 1

2
c2
¶¸
.

If c = v then no bidder types accept the buy price, B = µ(v). Seller expected

revenue is equal to

R(v) =
2

(v̄ − v)2
·
1

6
v3 − 1

2
v2v +

1

3
v3
¸
= v +

1

3
(v̄ − v),

which is the expected seller revenue for the English ascending bid auction. The

revenue function R(c) deÞned above is differentiable in c, since µ(c) is differentiable.

In particular,

R0(v) =
2

v̄ − v
·
1

2
(v + v)− µ(v)

¸
< 0.

The inequality follows since, in the proof of Proposition 6, it is established that

(αv̄ − αc+ 2)eαc − 2eαv
α(v̄ + c− 2v) > e

α(cv̄−v2)
v̄+c−2v

for c ∈ (v, v̄], and hence

µ(c) >
cv̄ − v2
v̄ + c− 2v

for c ∈ (v, v̄]. For c = v̄ we obtain µ(c) > 1
2
(v + v).

The result that R0(v) < 0 implies that there exists a cutoff value c0 less than v

and corresponding buy price, B0 = µ(c0), such that the seller�s expected revenue in

the buy-now auction exceeds R(v). ¤
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Figure 2: Seller Revenue in the Yahoo! Buy-Now Auction
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