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Abstract

This paper presents an experimental study of a mechanism that is commonly used
to sell multiple heterogenous goods. The novel feature of this procedure is that instead
of selling each good in a separate auction, the seller executes a single auction in which
buyers, who may be interested in completely di¤erent goods, compete for the right
to choose a good. We provide experimental evidence that a Right-to-Choose (RTC)
auction can generate more revenue than the theoretically optimal auction. Moreover,
in contrast to the �optimal�auction, the RTC auction is approximately e¢ cient in the
sense that the surplus it generates is close to the maximal one. Furthermore, a seller
who would like to retain some of his goods can generate more revenue with a restricted
RTC auction in which not all rights-to-choose are sold, than with the theoretically
optimal auction.
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1 Introduction

This paper presents an experimental study of a mechanism that is commonly used to sell

multiple heterogeneous goods. The novel feature of this procedure is that instead of selling

each good in a separate auction, the seller executes a single auction in which buyers, who

may be interested in completely di¤erent goods, compete for the right to choose a good.

Right-to-choose auctions (or RTC for short) are commonly used to sell real-estate, antiques,

jewelry and most recently, customized telephone numbers.1 The conventional wisdom is

that this type of auction is �best known for its ability to arti�cially create and enhance

bidding competition, usually between bidders who might otherwise not compete against

each other�(see http://www.elac-llc.com/html/auction-sales-propositions.html).

From a theoretical standpoint, there is no basis for this conventional wisdom as this

auction format is revenue equivalent to an auction in which each good is sold separately

(with no reserve price). However, we provide experimental evidence that supports the

conventional wisdom by demonstrating that in the lab, this form of auction can generate

more revenue than the theoretically optimal auction. Furthermore, a seller who would like

to retain some of his goods can generate more revenue with a restricted RTC auction in

which some rights-to-choose are not sold, than with the theoretically optimal auction.

For expositional purposes we illustrate the subject of our study with the following

simple example. Consider a record collector who has been collecting records over his

lifetime. Suppose the collector decides to sell three albums of three distinct music styles.

He chooses to sell one opera album (Stravinsky�s �Oedipus-Rex�), one punk-rock album

(The Sex Pistols) and one pop album from the 80�s (Duran Duran). On the day of the sale

six people show up to bid. However, because the three albums are so di¤erent the people

who show up have very speci�c tastes: two value only the opera album and have no use

for the others, another pair of buyers only value the punk album and the remaining two

are only interested in the 80�s album.

The record collector has to decide how to auction the records. One option is to hold

three separate auctions and run them either sequentially (o¤ering one record at a time

as they would do in Sotheby�s) or simultaneously (allowing bidders to bid simultaneously

on any record they want until the auction ends). We call such auctions Good-by-Good

auctions, or GBG for short.

1RTC auctions are also known as "Bidders Choice" auctions. By Googling either terms one can �nd
many sites that o¤er this auction format.
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An alternative is to combine the �thin�markets for each of the goods into one �thick�

market by transforming the three distinct goods into three units of a new homogeneous

good called a �right-to-choose�. A RTC auction would consist of three phases. In the �rst

phase, all six bidders submit sealed bids. The highest bidder wins the right to choose one

of the three goods, and he pays the second-highest bid. The other �ve bidders are then

told which good was taken, and the bidder, who wanted the same good as the winner,

exits the auction. The remaining four bidders enter the second phase of the auction, where

again bidders submit sealed bids, the highest bidder wins the right to choose one of the

two remaining goods, and then both he and another bidder who wanted the same good as

the winner, exit the auction. At the third and �nal phase, two bidders compete in what is

essentially a standard second-price auction.

Notice that this auction forces buyers of completely di¤erent goods to compete for the

same good, namely the �right-to-choose�. This can lead the highest bidder for one album to

pay the bid of the highest bidder for another album. While this feature seems appealing,

the RTC auction is actually revenue equivalent to the sequential or simultaneous GBG

auctions described above: in the symmetric equilibrium, both types of auctions lead to the

same e¢ cient allocation of albums.

This raises the question of why do sellers commonly use the RTC format, and what

gave rise to the common wisdom that this format enhances competition? To address this

question, we conduct an experimental analysis of RTC auctions in a simple environment

that captures the basic ingredients of our record collector example. A monopolist owns K

unrelated goods. For each type of good, there are n risk-neutral buyers who value only that

good. In our experimental design, K = 4 and n = 2. Buyers�valuations are purely private

and are drawn independently from a uniform distribution on [0; 1]. All this information is

common knowledge among all players.

The simplicity of our model has several appealing features. First, the optimal mech-

anism is easy to derive and has a simple structure: it consists of K separate second-price

auctions with a reserve price of 12 : Second, our model allows us to isolate how the mere

change of auction format (from GBG to RTC) a¤ects the bidding behavior by controlling

for the information that bidders have in each type of auction (in both formats, each bidder

knows the number of buyers who want the same good as he does). Finally, our model lends

itself to a simple experimental design, which reduces the concern for misunderstanding on

part of the subjects.

We interpret our set-up as a stylized model of situations in which heterogeneous goods
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of comparable value would be sold in separate independent auctions. For example, in art

auctions such as those held by Sotheby�s or Christie�s - the set of buyers who bid for one

piece of art (say, a painting) is often distinct from the buyers who bid for another piece of art

(say, a sculpture). In online auction sites, such as e-Bay, there are many instances in which

a single seller o¤ers di¤erent types of the same product - DVD�s, CD�s, books, di¤erent

brands of electrical appliances - in separate auctions with mutually exclusive sets of buyers.

In other words, our model applies in any situation where goods exist of comparable value

but for which the set of buyers do not overlap.

Our experimental �ndings lend support to the idea that RTC creates �competition out

of thin air� in the sense that buyers of di¤erent goods compete against each other. Not

only does the RTC auction generate signi�cantly more revenue than a GBG auction, it

generates more revenue than the theoretical optimal auction. Moreover, in contrast to the

�optimal�auction, the RTC auction is approximately e¢ cient in the sense that the surplus

it generates is close to the maximal one.

These �ndings raise the question of whether introducing ine¢ ciencies to the RTC for-

mat will further enhance competition. We focus on two types of ine¢ ciencies: restricting

quantity and withholding information (and randomly assigning goods to winning bidders

whose good was taken). Our experimental �ndings demonstrate that quantity restriction

leads to more aggressive bidding behavior. Speci�cally, when quantity is restricted by

one unit, more revenue is raised in each phase of the restricted RTC auction than in the

corresponding phase of the unrestricted auction. However, given the high revenue of the

RTC auctions when all goods are sold, less room is left for quantity restriction to further

intensify competition. According to the theory, quantity restriction enhances revenue if

the ratio between the number of goods for sale and the number of bidders per good is

su¢ ciently high. Our experimental results suggest that this ratio needs to be higher than

that predicted by theory. In this sense, quantity restriction leads �less quickly�to higher

revenue than theoretically expected. In fact, for the parameters of our experiment, revenue

is roughly equal in both cases. Still, a seller who faces unexpected liquidity constraints and

who is forced to sell goods against her will, may choose for a RTC format with quantity

reduction because it allows her to keep one of the goods without raising less revenue.

Next we look at a RTC auction with no information (NIRTC for short). In this variant

of the RTC format, at the end of each phase, bidders are not informed of the good taken
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in the previous round, and are not given the opportunity to exit the auction.2 This is

essentially a sequential variant of what is called a �pooled auction� where each bidder

submits a single sealed-bid and the rank-order of his bid determines his place in the queue

for choosing among the available goods. We �nd that this auction format also outperforms

the GBG auction with optimal reserve prices, but fails to raise more revenue than the

unrestricted RTC auction.

Finally, we check the e¤ect of combining both types of ine¢ ciencies: quantity restric-

tion and no information. Our data suggests that withholding information and restricting

quantity is no better than conducting a RTC auction with only one of these features.

The fact that our RTC auctions outperform the optimal auction in our experimental

environment means that the behavior observed di¤ers from that predicted by the theory.

Since the observed behavior in the optimal auction closely follows the theoretical prescrip-

tion (i.e., most subjects bid close to their value), our results are driven by the fact that the

RTC design induces a bidding behavior that departs from the theory. We show that the

bidding data cannot be reconciled by introducing risk aversion in the model. In agreement

with the data, risk aversion raises the bids and revenue in the RTC auctions. In contrast

to the data, however, risk aversion produces cautious bids and lower revenue in the NIRTC

auction compared to the risk neutral case.

To explain our experimental �ndings, we propose a parsimonious departure from the

standard theoretical model that captures the conventional wisdom that RTC auctions �arti-

�cially enhance competition between buyers who would otherwise refrain from competing�.

More speci�cally, we hypothesize that bidders behave as if the number of buyers who are

after their good is higher than it actually is. We provide intuition motivating this idea as

well as evidence that this model of behavior provides a good �t for bidding patterns in the

data.

The paper is organized as follows. We begin with a discussion of related literature

in Section 2. In Section 3 we present the theoretical predictions that we will test using

the experimental design described in Section 4. Section 5 summarizes our experimental

�ndings and Section 6 concludes.

2See our discussion of Burguet (2005) in the next section.
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2 Related literature

As mentioned in the Introduction, auction formats, where instead of winning a speci�c

object, bidders win the right-to-choose any of the yet unsold objects, are often used to sell

real-estate such as condominiums and land parcels. Most of these auctions either follow

our sequential RTC design (see Ashenfelter and Genesove (1992)), or use the simultane-

ous �pooled auction� format. Menezes and Monteiro (1998) derive the optimal bidding

strategies for risk-neutral bidders in a pooled auction and show that in the homogeneous

private-values case, this format is revenue-equivalent to a sequential auction of multiple

items. In an experimental study, Salmon and Iachini (2005) compare the pooled auction

to the simultaneous ascending auction and �nd that pooled auctions raise higher revenues

than the simultaneous ascending auction. The pooled auction has the disadvantage that

bidders frequently experience losses when they are forced to buy their less preferred goods

at high prices. Salmon and Iachini report that the overbidding in their pooled auctions

can neither be explained by loss aversion nor by risk aversion. Instead, they propose that

an "attentional bias" explains the overbidding observed in the pooled auction. According

to this bias, bidders tend to focus on their top items and tend to ignore the possibility of

winning the less preferred goods.

Burguet (2005) studies a model with two substitute goods and shows that the RTC

auction in which all goods are sold is e¢ cient but not optimal. However, the optimal

mechanism turns out to be quite complex requiring information, which is not readily avail-

able to the seller. Burguet proposes a detail-free way of introducing ine¢ ciency into the

RTC auction, which improves the performance of the original auction: the seller should not

reveal to the bidders which item was chosen by the winner of the previous phase. Clearly,

in such an auction a winning bidder may wind up paying a price higher than his value for

the good he wins. Consequently, winning bidders may wish to opt out when their willing-

ness to pay for each of the available goods is smaller than the price they need to pay.3 We

propose quantity restriction as an alternative means for introducing ine¢ ciency into the

RTC auction in a detail-free manner. Furthermore, we present experimental evidence that

the RTC auction in which bidders are informed of the good selected each phase, generates

more revenue than when this information is withheld.

Goeree, Plott and Wooders (2004) introduce risk-averse bidders into Burguet�s (2005)

model. They show that in this case, RTC auctions in which all goods are sold raise more

3 In fact, under California law, winning bidders in pooled auctions have the right to opt out.
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revenue than standard simultaneous or sequential ascending auctions. These authors also

test their model in the laboratory, and provide evidence in support of their theoretical

result. These �ndings suggest that the performance of the RTC auction may be robust to

the buyers�degree of risk aversion. This contrasts with the theoretical optimal auction,

which is sensitive to risk aversion. Goeree et al. (2004) do not consider the possibilities of

quantity restriction or withholding information about previous winners, and they do not

compare their results with the optimal auction in their set-up.

Notice that risk aversion explains the experimental results observed in RTC auctions

but not the experimental results observed in pooled auctions. Likewise, attentional bias

explains the results in pooled auctions but not the results in RTC auctions. We propose

an explanation that is consistent with overbidding in both types of auctions.

Our paper follows a small literature that has focused on the design of robust, detail-

free mechanisms. This literature was inspired by what became to be known as the �Wilson

Critique�, which called for the design of mechanisms that are independent of the details

of the environment (see Wilson (1987)). Our approach to this critique is to examine a

detail-free procedure for stirring up competition in thin markets. An alternative approach

is o¤ered by Baliga and Vohra (2003) and Segal (2003) who study the design of detail-free

auctions for thick markets with many buyers where the seller is free to discriminate between

buyers by using bidder speci�c reserve prices. Under this approach, the seller uses the bids

of buyers as sample points to estimate the true distribution of valuations: each buyer faces

a distinct reserve price, which is based on the bids of the buyers. When buyers�valuations

are conditionally independent, the revenue raised by this auction converges to the revenue

generated by the optimal auction, given the true distribution.

3 RTC auctions in theory

In this section we present the environment we shall focus on and derive the theoretical

predictions for this environment. These predictions will serve as a benchmark for comparing

our experimental �ndings. Most of the results in this section are derived using standard

tools from the analysis of sequential auctions (e.g., Milgrom and Weber (2000)).

We consider a seller with K heterogeneous goods who faces the following demand

structure. For each of the K goods there are exactly n risk neutral buyers. A randomly

chosen buyer is equally likely to demand any of the K goods. Each buyer has a private

value for only one of the K goods (the �preferred�good), and has zero value for all other
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goods. All buyers independently draw the value for their preferred good from a uniform

distribution on [0; 1].4 All of the results that we report in this section are in reference to

this model. We relegate all proofs to the appendix.

There are several selling procedures that accommodate the above demand structure.

The benchmark procedure consists of holding K separate second-price auctions, one for

each good. We call this procedure a good-by-good (GBG) auction and denote it byGBG(K;n),

where K stands for the number of goods and n for the number of buyers per good.

An alternative selling procedure is a right-to-choose (RTC) auction, which proceeds as

follows. There are K � q � K phases, where q (which stands for �quantity-restriction�)

is a nonnegative integer, which is smaller than K. In the �rst phase, all nK bidders bid

for the right to choose among the K available goods. The highest bidder in phase 1 wins

the right to choose one of the K goods and pays the bid of the second highest bidder.

At the end of this phase bidders are told which good was selected by the winner (bidders

are not informed of the price paid by the winner). Bidders are then given the option

to either exit the auction or stay and move to the next phase. Clearly, all of the n � 1
buyers who value the same good as the winner will at this point drop out of the auction.

The remaining bidders participate in phase two, which is essentially the same as phase

1: bidders simultaneously submit bids, the highest bidder wins the right to choose one of

the remaining goods, the winner pays the second highest bid and chooses a good, and all

other bidders are informed of the good that was chosen. This continues until K � q rights
o¤ered for sale are sold. A sequential right-to choose auction with K goods, K � q phases
and n bidders per good is denoted RTC(K;K � q; n).5 We choose the second-price rule
to help make the analysis more tractable since this pricing rule simpli�es the derivation of

the equilibrium strategies.

A strategy in a RTC(K;K� q; n) is a collection of K� q functions, one for each phase,
where each function maps a bidder�s value into a bid for the corresponding phase of the

auction. The second-price auction in each phase can be thought of as being an ascending-

clock English Auction in which the price rises until the pen-ultimate bidder drops out and

4All of our results can easily be generalized for a uniform distribution on [v; v]. We assume that for each
good the seller has a value equal v. The possibility to reduce quantity in a right-to-choose auction becomes
even more attractive in situations where the seller is forced to sell the goods as a result of �nancial trouble
while she has higher values for the goods than the lower end of the support.

5 In principle, an RTC auction could also be run simultaneously where bidders submit K � q bids (one
bid for each phase of the auction) all at once in addition to declaring which good they are interested in
buying. We chose a sequential design because it highlights the trade-o¤ between having a higher chance of
obtaining a good now and paying a lower price in the future.
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the remaining bidder wins at the last drop-out price (to maintain strategic equivalence with

the second-price format, we assume that the auctioneer does not reveal drop-out prices of

bidders who leave the auction). Hence, each bidder in the auction must determine a drop-

out price for each phase in which he or she is still active. For a bidder with value v we

denote this phase-k drop-out price by bk(v), where k = 1 is the initial phase and k = K�q
is the �nal phase.

We focus on the symmetric perfect Bayesian Nash equilibrium (SPBE) in which all

bidders use the same monotonic bid function in each phase. Let N denote the total number

of bidders (i.e., N = nK) and let Nk denote the number of active bidders in phase k of the

auction (i.e., Nk = n(K � k + 1)).

Proposition 1 The RTC(K;K; n) has a SPBE with the property that in each phase
1 � k � K every bidder uses the linear bid function bk(v) =

(Nk�1)�(K�k)
Nk�1 v.

To understand the intuition for this result let K = 2 and n = 2. In the second and

�nal phase there are two bidders competing in a standard second-price auction, hence,

b2(v) = v. To derive b1(v) let us compare the payo¤ from bidding according to v and

bidding just below (or above) that value. We can make this comparison, conditional on

the event another bidder also has a value of v; since this is the only event in which these

two bids result in di¤erent outcomes. Thus, bidding according to one�s true value in phase

1 leads to an expected payo¤ of v � b1(v): Bidding slightly below one�s value would result
in losing the �rst phase and, provided the good is still available, winning the second phase.

Hence, the expected payo¤ from bidding below one�s value is 23
�
v � 1

2v
�
: The equilibrium

bid, b1(v); should make the bidder indi¤erent between bidding according to v and bidding

slightly below, hence, b1(v) = 2
3v:

If buyers bid according to Proposition 1; then combining K markets together and

letting all bidders compete against each other for �rights-to-choose�, does not lead to a

higher expected revenue in equilibrium.

Proposition 2 The expected revenue in the SPBE of a RTC(K;K; n) is equal to the

expected revenue obtained in a GBG(K;n) where bidders use weakly dominating strategies.

By introducing some ine¢ ciency into the auction, one can break the revenue equivalence

of RTC and GBG. This can be achieved by taking advantage of the fact that the seller in a
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RTC auction is simply a monopolist with a �xed supply ofK rights-to-choose. When facing

an inelastic known demand, a monopolist with a �xed supply would maximize revenue by

selling less units than what he actually has. The question is, could a monopolist in our

setting also increase his revenue by restricting quantity? We address this question for the

case in which the monopolist reduces quantity by one unit. Applying the same intuition

of Proposition 1 to RTC with quantity restriction yields the following.

Proposition 3 The RTC(K;K � 1; n) has a SPBE with the property that in each phase
1 � k � K � 1 every bidder uses the linear bid function

bk(v) =
Nk � (K � k)
Nk � 1

v (1)

Note that quantity restriction enhances the competition between bidders, as evident

from the fact that the bidding coe¢ cient in phase k of RTC(K;K � 1; n) is higher by
1

Nk�1 than the corresponding bid in the RTC(K;K; n). Since there is one less phase in

the restricted RTC auction, it is not immediate that the rise in bids would generate higher

revenues. However, for any n there is K large enough such that selling all but one good

raises more revenue. In particular, for the setting we use in our experiments, where n = 2,

quantity restriction raises revenue for any K > 2.

Proposition 4 For every n there exists a �nite K(n) such that for all K � K(n), restrict-
ing quantity by one unit raises the expected revenue in the RTC auction. In particular, for

n = 2 we can set K(2) = 3.

As mentioned in the Introduction, an alternative way to introduce ine¢ ciency into the

RTC auction is to withhold information from bidders by making the following change in the

original RTC design described above: at the end of each phase, bidders are not informed of

which good was taken by the winner of that phase. That is, a bidder who wins a phase, �rst

pays the second highest bid, and then gets to choose one of the available goods. When a

winner of some phase does not �nd the good he values, he picks one of the remaining goods

at random. We interpret this assumption as saying that a bidder does not want to leave
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an auction empty handed (especially if he wins and pays).6 We call this auction format a

RTC auction with no information, or NIRTC for short. A NIRTC with K goods, K � q
phases and n bidders per good is denoted NIRTC(K;K � q; n). The SPBE bids for this
auction, with and without quantity restriction, can be derived using the same intuition

behind Proposition 1: In the NIRTC auction, the number of bidders in phase k is de�ned

as: Nk = nK � k + 1:

Proposition 5 For all q < K, the NIRTC(K;K � q; n) auction has a SPBE in which
bidders use a linear bid function in every round. The bidding coe¢ cients (�k)

K�q
k=1 are given

by

�K�q =
n (q + 1)

(n� 1)K + q + 1

and the unique solution to the following system of di¤erence equations

N (n� 1)
NkNk+1

= �k �
Nk+1 � 1
Nk+1

�k+1

where k = 1; : : : ;K � q � 1.

Similar to quantity restriction, withholding information also leads buyers of di¤erent

goods to compete against each other since the winner of each phase takes a good, whether

or not he is interested in that good. In our experimental design, we focus on an environment

where the market for each good is �thin� in the sense that only two buyers demand each

good (n = 2). In this environment, the enhanced competition among buyers leads to higher

expected revenues.

Proposition 6 The expected revenue in the SPBE of the NIRTC(K;K; 2) is higher than
that of the RTC(K;K; 2).

In light of Proposition 6, it is natural to ask whether quantity restriction could help

raise further the expected revenue in a NIRTC.

6We could formalize this interpretation by assuming that for each bidder there is only one good from
which his value is drawn from a uniform distribution on ["; 1], while for the other K � 1 goods his value is
0 < � < ", and where " is arbitrarily close to zero.

11



Proposition 7 Quantity restriction lowers the expected revenue in the NIRTC auction:

for all q < K, the expected revenue in the SPBE of NIRTC(K;K � q � 1; n) is less than
the expected revenue in the SPBE of NIRTC(K;K � q; n).

While quantity restriction raises revenue in a standard RTC, it reduces revenue in a

NIRTC. Roughly speaking, this follows from the fact that by eliminating the K-th phase in

a NIRTC auction we lose the bid of the K + 1 highest bidder. In contrast, by the time we

get to the last phase in a RTC auction, there is a high probability that the K + 1 highest

bidder has already left the auction, hence eliminating this phase leads to a smaller loss.

We conclude this section by noting that the optimal selling procedure in our framework

has a very simple structure.

Proposition 8 Expected revenue is maximized by a GBG(K;n) auction with a reserve
price of 12 .

To understand the intuition for this result, note that our assumptions imply that the

payo¤ type of each bidder is uni-dimensional: it can be summarized by the value he

assigns to his preferred good. Because bidders draw this value independently from the

same distribution, there is no loss of generality from �nding the optimal mechanism for a

single market and conducting K separate replicas of this mechanism. A straightforward

application of Riley and Samuelson (1981) yields that an optimal auction in the market

for good k is a second-price auction with a reserve price of 12 .

4 Experimental Design and Procedures

4.1 Design

The experiment we ran consisted of six treatments. Each treatment corresponded to one

of the six auction formats investigated in the previous sections: a standard RTC auction

in which all goods are sold (RTC(K;K; n)), a RTC auction in which one good was not

sold (RTC(K;K � 1; n)), a NIRTC with all goods sold (NIRTC(K;K; n)) and with one
good not sold (NIRTC(K;K � 1; n)), a GBG auction where each good is sold using a

second-price rule with no reserve price (GBG(K;n)) and a GBG auction with an optimal

reserve price of 50 (OGBG(K;n)).
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Since the tools to intensify competition are most relevant in thin markets, we set the

number of bidders for each good equal to two (n = 2) in all treatments. We chose K = 4, so

that in total eight subjects were competing for four goods. In some auctions we restricted

the number of rights to be sold to K � 1 = 3, so our auctions consisted of RTC(4; 4; 2),

RTC(4; 3; 2); NIRTC(4; 4; 2); NIRTC(4; 3; 2); GBG(4; 2) and OGBG(4; 2). The value for

each subject was independently drawn from a uniform distribution over the support [0; 100].

The experiments were performed at CREED, the experimental economic laboratory of

the University of Amsterdam, as well as the experimental laboratory at the Center or

Experimental Social Science at New York University.

For each experiment subjects were recruited from the general undergraduate population

of these respective schools. The experiment lasted about one hour and twenty minutes,

except for the good-by-good auction which typically lasted about one hour. Subjects were

paid a show up fee in each location and earned the remainder of their money according

to how they did during the experiment. Motivation and understanding of the instructions

were good and average earnings were $18:2 in Amsterdam and $15:8 in New York. No

signi�cant behavioral di¤erences were found across locations so we pool all observations

from both subjects populations.7

Each group of subjects performed one and only one type of auction and repeated the

auction 16 times after participating in a practice round. There were eight groups performing

each treatment (four in Amsterdam and four in New York) so the total number of subjects

recruited was 384 (eight groups of eight subjects in six treatments). Four di¤erent sets

of values were generated for the �rst four groups of subjects in each treatment. The

same exact sets of values were also used for the second four groups. Hence, each set of

randomly generated values was used twice in the experiment in each treatment (once in

New York and once in Amsterdam). We did this to ensure that any revenue di¤erences

were attributable to di¤erences in behavior rather than di¤erences in the vectors of random

variables generated. This also allowed us to make some controlled comparisons of behavior.

Our design is summarized in Table 1.

Table 1
7There was a small set of subjects who went bankrupt in New York. All observations occurring after

these bankruptcies happened were dropped. This was the only di¤erence in the behavior of subject pools
noticed.
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4.2 Procedures

In all six treatments subjects were seated in a computer lab in groups of 16 and separated

into two sub-groups of eight subjects each. Subjects read the computerized instructions at

their own pace. The instructions of the RTC(4; 3; 2) auction are presented in Appendix B.

Each group performed the same experiment, but once a subject was assigned to a group of

eight, he or she remained in that group for the entire experiment. In all treatments each of

the 16 periods began by each subject being shown the good he or she valued (either good

A, B, C, or D) and the value of that good for the period. After this was presented on the

screen the program asked them to bid. In all of the RTC auctions subjects were asked to

bid in phases.

The RTC auctions proceeded as follows. In phase 1 subjects submitted their bid and,

using the second price rule, the good was allocated to the highest bidder at the second

highest price. If the winner selected the good of another subject, that subject was informed

that his or her good was selected and was not allowed to bid in further phases of this period.

The vector of submitted bids was not revealed to the bidders. The winner was the only

one who knew the price at which he or she had bought the good. The bidders whose good

was not won in the initial phase proceeded to phase 2. This phase, as well as those that

followed it, proceeded in the same manner as phase 1.

In the NIRTC auctions, after each phase, no information was o¤ered as to which good

was chosen. All that subjects were told was that some good had been chosen. Bidding

then continued as it did in the previous phase. If the good preferred by a winning bidder

had been selected previously, the bidder was assigned a good at random (a good for which

he or she has a zero value). At the end of the period the earnings of each subject was

placed on the screen as was the cumulative earnings of the subject up until that period.

When the next period began, subjects were allocated to di¤erent goods at random.

Hence, each subject was randomly paired with one other subject who valued the same

good as he. A new independent value was presented to them and bidding proceeded in

phases as before. In RTC(4; 4; 2) and NIRTC(4; 4; 2) there were four phases per period

while in RTC(4; 3; 2) and NIRTC(4; 3; 2) there were three phases per period. Finally, in

the GBG(4; 2) and the OGBG(4; 2) auctions, each period consisted of only one phase in

which all subjects bid for the good they valued and faced one other subject who also valued

that good.

Total earnings in the experiment consisted of the per-period earnings of subjects summed
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over all 16 periods. Subjects played for points which were converted into euros and dollars

at the rate of 15 points per one dollar. Finally, to protect subjects from bankruptcy we

gave each subject a 150 points at the beginning of the experiment and all losses during any

period were subtracted from this amount.8

5 RTC auctions in the lab

From the analysis in the previous section it follows that in the SPBE of the auction, subjects

are expected to bid in each phase according to a linear bid function with the property that

the ratio of bid to value increases from phase to phase in a RTC auction and decreases

in a NIRTC auction. The equilibrium bid coe¢ cients obtained for the parameters of our

experimental design, are presented in Table 2.

Table 2

Table 2 also compares two notions of expected revenue. The �rst notion, displayed

in the �fth column, computes the expectation with respect to all possible realizations of

values. This is the expected revenue predicted by the theory. The second notion, displayed

in the last column, computes the expectation with respect to the values drawn in our

experiment. This is the revenue that is expected to be generated when subjects with the

values generated in our experiment bid according to the equilibrium. While the �rst notion

assumes that the law of large numbers is at work in the generation of values, the second

notion accounts for the fact that set of values generated in the experiment is �nite. Note

that there is little qualitative or quantitative di¤erence between the numbers in these two

columns.

5.1 Revenue and e¢ ciency

Before we analyze the bidding behavior of our subjects, we compare the performance of the

auctions in terms of revenue and e¢ ciency. Table 3 presents the mean revenues generated

by our subjects in each phase and treatment along with their standard deviations. It also

8Of the 384 subjects, nine went bankrupt and this occurred in six groups (i.e. in some groups several
people went bankrupt). All bankruptcies except one occurred in the NIRTC (3,4,2) and NIRTC(4,4,2)
experiments. The one other bankruptcy occured in the RTC(4,4,2). Six of the nine bankruptcies occurred
after period 11 (four in period 14). To purge the impact of bankruptcy on the data we drop all observations
for subjects in any group after a subject had gone bankrupt.
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presents the revenues expected to be generated at the SPBE of our auctions along with

the expected theoretical standard deviations.

Table 3

A major �nding in Table 3 is that the RTC(4; 4; 2) and RTC(4; 3; 2) raised substantially

more revenue than predicted by the theory. Not only did the RTC(4; 4; 2) outperform the

GBG(4; 2), it raised signi�cantly more revenue than the theoretical optimal auction, the

OGBG(4; 2). The mean revenue of the RTC(4; 4; 2) is 203:7, whereas the mean revenue

of the OGBG(4; 2) is only 178:8. A Mann-Whitney test ran on the sample of revenues

generated by these auctions indicates that this di¤erence is signi�cant at the 1% level.9 The

mean revenue of the GBG auction with no reserve price is only 145:1, which is signi�cantly

less than that raised by the optimal auction at the 1% level.

The data in Table 3 shows that quantity restriction leads to more aggressive bidding in

each of the �rst three phases of the RTC auction. This is evident by noting that in each

of these phases the revenue raised by the RTC(4; 3; 2) is greater than that raised in the

RTC(4; 4; 2). Because bids in the RTC(4; 4; 2) were already higher than those predicted,

the bid increment induced by quantity restriction was not su¢ cient to completely o¤set

the fact that only three goods were sold. Indeed, the di¤erence in revenues between the

RTC(4; 4; 2) and the RTC(4; 3; 2) is not statistically signi�cant.

According to Table 3 a restricted RTC generates signi�cantly more revenue than a GBG

auction with no reserve prices. In particular, the mean revenue of RTC(4; 3; 2) is 188:7,

whereas the mean revenue of the GBG(4; 2) is only 145:1. According to a Mann-Whitney

test, the di¤erence between these two amounts is signi�cant at the 1% level. Furthermore,

the mean revenue of the RTC(4; 3; 2) is strictly higher than that of the OGBG(4; 2), though

this di¤erence is not statistically signi�cant. This suggests that a seller, who does not have

enough information to set optimal reserve prices, may bene�t from conducting a RTC

auction with quantity restriction.

Our experimental �ndings suggest that withholding information in a RTC auction may

generate more revenue than that generated by a GBG auction with optimal reserve prices.

The NIRTC(4; 4; 2) auction raised a signi�cantly higher revenue than the OGBG(4; 2)

auction (at the 5% level). However, theNIRTC(4; 4; 2) did not raise more revenue than the

9All test results use independent average data per group as observations and groups with bankruptcies
are not used. Unless indicated otherwise, Mann-Whitney tests are used.
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RTC(4; 4; 2): Our data also suggests that withholding information and restricting quantity

is no better than conducting a RTC auction with only one of these features: the di¤erence

between the revenue of the NIRTC(4; 3; 2) and the revenues of the NIRTC(4; 4; 2) and

the RTC(4; 3; 2) is not signi�cant.

The expected revenue generated by an auction format is not the only criterion to judge

its desirability. All other things being equal, most sellers would probably prefer auction

formats in which the variability of revenue is low. Theoretically, both the restricted and

the unrestricted right-to-choose auctions are expected to be less volatile than the standard

good-by-good auction. For example, as we see in Table 3, at the equilibrium the variance of

the revenues generated by the RTC(4; 4; 2) auction is 33:7 while it is 52:9 for the GBG(4; 2)

auction. Although the right-to-choose auctions actually produced a higher variation of

revenues than expected in theory, each generated a lower variance than both GBG auctions.

A series of pair-wise F-tests reveal that the RTC(4; 3; 2) and NIRTC(4; 3; 2) are least

volatile at the 1% level.10 The di¤erence between the variance of the RTC(4; 4; 2) and

those of the two GBG auctions (the GBG(4; 2) and the OGBG(4; 2)) is not statistically

signi�cant at the 5% level. These �ndings provide further support that a seller faced with

unknown demand may bene�t from conducting RTC auctions with quantity restriction.

It is also important to note that the revenues in periods 9-16 are virtually identical

to those raised in all 16 periods. For example, the revenues raised by the RTC(4; 4; 2)

and the RTC(4; 3; 2) in periods 9-16 were 206:5 and 192:3 respectively, while those raised

in all 16 periods were 203:7 and 188:7 respectively. Similarly, the revenue raised by the

OGBG(4; 4; 2) in periods 9-16 is 179:1, whereas the average revenue over all 16 periods

is 178:8. When comparing revenues in the last eight periods across auction designs, the

di¤erence between the OGBG(4; 2) revenue and that of the RTC(4; 4; 2) in periods 9-16

remains statistically signi�cant at the 5% level. It is not the case that subjects behaved

di¤erently in the second part of the experiment.11 Behavior did not converge to something

closer to that predicted by standard theory.

We now turn to a comparison of the auctions in terms of e¢ ciency. We focus on two

measures of e¢ ciency. First, we investigate the allocative e¢ ciency of these auctions by

looking at whether the available goods are allocated to the bidders who value them the

10An exception is the comparison between NIRTC(4; 3; 2) and NIRTC(4; 4; 2) that is insigni�cant at
p = 0:11.
11The revenues raised by the NIRTC(4,4,2) and NIRTC (4,3,2) auctions in periods 9-16, 197.5 and 178.3

respectively, are in the same ballpark as the revenues for all 16 periods (196.7 and 187.1).
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most. To measure allocative e¢ ciency we simply count the fraction of times during the

auction that the goods were sold to the highest valuation bidders. We call this measure

Ordinal E¢ ciency since it only takes into account whether an optimal trade was made or

not but not the value of the trade.

One drawback of ordinal e¢ ciency is that it disregards the magnitude of welfare losses.

In particular, this measure of e¢ ciency does not distinguish between a good that is not

sold to any buyer and a good that is not sold to the highest valuation buyer. We therefore

propose a second measure of e¢ ciency, called Cardinal E¢ ciency, which is de�ned as the

ratio of �realized surplus�to �maximal surplus�. By �realized surplus�, we mean the sum

of values of the winning bidders, whereas �maximal surplus� refers to the sum of values

of the highest valuation bidders for each good. While Ordinal E¢ ciency reports whether

or not a welfare loss was incurred, Cardinal E¢ ciency reports the magnitude of this loss.

Table 4 presents our e¢ ciency results.

Table 4

Several features of this table are noteworthy. First, notice that the RTC(4; 4; 2) and the

GBG(4; 2) auctions are close to being fully e¢ cient in the cardinal sense. Each practically

achieves 100% e¢ ciency. Second, note that they are less e¢ cient in ordinal terms. This

clearly indicates that if an ine¢ cient allocation occurred it was more likely to have occurred

when the subjects valuing the same good had similar values. This follows from the fact

that ine¢ cient allocations have equal weight under ordinal e¢ ciency, whereas an ine¢ cient

allocation among subjects with close values has small e¤ect under cardinal e¢ ciency (i.e.

it matters little for cardinal e¢ ciency if a good is allocated to a subject who values it at

76 while his pair member values it at 77).

The NIRTC auctions, as expected, do rather poorly. For example, the ordinal e¢ ciency

of the NIRTC(4; 4; 2) is only 66:8%; and the ordinal e¢ ciency of the NIRTC(4; 3; 2) is

56:3%; the lowest among all auction formats. The realized cardinal e¢ ciencies of the

NIRTC(4; 4; 2) and NIRTC(4; 3; 2) are somewhat higher: 79:9% and 71:5% respectively.

This fact, coupled with the revenue results discussed above, suggests that NIRTC auctions

are poor institutional choices for sellers in our type of environment.

We used Mann-Whitney tests to determine whether or not di¤erences in e¢ ciency

scores are statistically signi�cant. Under both notions of e¢ ciency, the di¤erence between

the score of the RTC(4; 4; 2) and those of RTC(4; 3; 2) and OGBG(4; 2) is statistically
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signi�cant at the 1% level. As expected, the two e¢ ciency scores of the RTC(4; 4; 2)

are not statistically di¤erent from those of the GBG(4; 2), while those of the latter are

signi�cantly higher than the ordinal and cardinal scores of the OGBG(4; 2) (at the 1%

level).12

Table 4 highlights an interesting experimental �nding. A recurring theme in the

mechanism-design literature is the trade-o¤ between e¢ ciency and optimality. In con-

trast, we �nd that the highest revenue is in fact generated by an e¢ cient auction: the

unrestricted RTC auction.

5.2 Bidding behavior

In this section of the paper we o¤er an explanation for why our experimental RTC and

NIRTC auctions outperformed their GBG and OGBG counterparts. First, we demon-

strate that the superior performance of our RTC and NIRTC auctions was not due to a

sub-optimal performance on the part of our GBG or OGBG auctions: the subjects in these

auctions basically bid their value in accordance with the theory. Second, we argue that risk

aversion alone cannot explain the high bids in both the RTC and NIRTC auctions. Finally,

we propose a behavioral explanation for why the right-to-choose format (with/without in-

formation and with/without quantity restriction) induces the competitive bidding behavior

observed in our experiment. We argue that consistent with the conventional wisdom of

auctioneers, bidders are led to believe that the competition they face is �ercer than it

actually is.

5.2.1 Bidding Behavior in GBG and OGBG Auctions

As stated above, it is important to note that our RTC auctions outperform the GBG

auctions (with and without optimal reserve prices) despite the fact that, at least in those

auctions, subjects bid according to the theory. Hence, the relatively good performance of

our RTC auctions was not the result of sub-optimal behavior by subjects in our GBG(4; 2)

or OGBG(4; 2) experiments. To illustrate this point, remember that in these auctions,

given their second price nature, subjects are expected to bid their value. From the bid

data we see that this is true in the sense that the median di¤erence between bid and value
12As expected, the e¢ ciency scores (ordinal and cardinal) of the NIRTC(4; 3; 2) are signi�cantly lower

than those of any other auction format. A similar observation holds for the NIRTC(4; 4; 2) with two
exceptions: it is more e¢ cient (ordinally and cardinally) than the NIRTC(4; 3; 2) and its ordinal e¢ ciency
score is not statistically di¤erent from that of the RTC(4; 3; 2):
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in both of these auctions is zero while the mean di¤erence between bid and value in the

GBG(4; 2) and OGBG(4; 2) auctions are 1:21 and 0:40, respectively. Figures 1a and 1b

present histograms where the variable on the x axis is the di¤erence between the value a

bidder received and his or her bid in the GBG and OGBG auctions respectively.

Figures 1a-1b

Note that a clear majority of the bidders basically bid their values in the two auction

formats. There are only very few bids that deviate substantially from value. Such behavior

indicates that bidders in these auctions understand that it is weakly dominant to bid one�s

value.

5.2.2 Risk Aversion in RTC and NIRTC Auctions

The previous subsection presented clear evidence that the mean revenues in our experimen-

tal RTC and NIRTC auctions are substantially higher than the expected revenues in the

SPBE of these auctions. This means that subjects in our experimental RTC and NIRTC

auctions tend to submit higher bids than those predicted by our theoretical analysis. We

�rst deal with the possibility that risk aversion explains the deviations of actual bids from

the theoretical analysis that assumed bidders are risk-neutral. In our original RTC auctions

(with and without quantity restriction), a risk averse bidder would bid higher than his risk

neutral cohort (assuming both behave according to equilibrium). To see this, note that as

long as one does not bid above his value in a RTC auction, a bidder can avoid incurring a

loss. Hence, if a bidder decides to bid above the prescribed risk neutral equilibrium bid, he

or she is simply trading o¤ an increased probability of winning a good against the pro�t to

be made conditional on winning. As is true of auctions in general, risk averse subjects deal

with this trade-o¤ by raising their bids. Hence, we would expect that risk averse subjects

in RTC auctions would do exactly as we have observed them doing and bid above the

predictions of the risk neutral equilibrium bid function. This suggests that risk aversion

may potentially account for the high revenues generated by our RTC auctions.

In contrast, risk-averse bidders would bid below their risk-neutral bids in a NIRTC

auction. To see why, note that a NIRTC auction is in essence a second-price auction in

which the highest bidder of each phase wins a lottery that awards that bidder his most

preferred good with some probability and nothing with the complementary probability.

Consider then a bidder in the �nal phase of such an auction where there is, say, 50%
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chance of winning one�s good and 50% chance of winning nothing. A risk-neutral bidder

would bid half his value, but a risk-averse bidder would bid his certainty equivalent of the

lottery, which is strictly less than half his value. As a result, we would expect the revenues

in NIRTC auctions with risk-averse bidders to be strictly lower than the revenues generated

by risk-neutral agents. However, this is not what we observe in the data.

To illustrate this point, suppose all bidders have the same CARA utility function of the

form U(x) = 1�e�rx
r . With more than two phases, we were not able to derive analytical

solutions for the equilibrium bids. Therefore, we computed the bids numerically for the

parameter r = 0:07 that provided a good �t for the data of a previous auction experiment.13

Figures 2a - 2d show the predicted bids together with the average actual bids. For the

RTC auctions, the bids predicted by the CARA model come reasonably close to the actual

bids, although predicted bids are still below actual bids. The �t of the CARA predictions

for the NIRTC auctions is much worse, though. There, predicted bids fall far below the

actual bids, especially in the later phases of the auction.

Figures 2a-2d

Table 5 presents the revenues in the RTC and NIRTC auctions that can be expected

for a CARA model with r = 0:07 in combination with the observed revenues and the

revenues predicted by the risk neutral model (in the row labelled n=2, the other row will

be discussed later). As evident from the table, the revenues generated in the lab by the

NIRTC auction are substantially above the revenues expected from risk-averse bidders.

This exercise exempli�es the general problem for the risk aversion approach. To improve

the �t of the RTC data, one needs to introduce risk aversion, but risk aversion decreases

the �t of the data in the NIRTC auctions.

Table 5

5.2.3 A Possible Explanation

Auctioneers praise the RTC procedure because it �arti�cially creates competition between

bidders who would otherwise refrain from competing�. Subjects�comments in the informal

debrie�ng after the experiment supported this auctioneers�intuition. In the RTC auctions

13Goeree and O¤erman (2003) use the same utility function to analyze second-price private value auctions
with value uncertainty. They report maximum likelihood estimates for r in the range of [0:06; 0:08].
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as well as the NIRTC auctions, subjects mentioned that they thought they had participated

in �extremely competitive games�.

In theory, RTC and GBG auctions are revenue equivalent because despite the fact that

there are many people in the auction, each bidder really only faces competition from one

other person �the one who values his same good. This is the key to bidding behavior in

theory. So the perception that these auctions increase competition is a false perception.

When subjects actually engage in these auctions, however, the key feature of the theory

is obscured because they learn that unless they have received a very high value for their

good, there is a signi�cant chance that they would lose to their competitor. Such bidders

come to the realization that in order to increase their chances of winning, they must try

to snatch the good in an early phase of the auction. But in these phases bidders face

competition by all other bidders since they must outbid all of them in order to win. This

leads them to bid close to their value in early phases under the realization that even a

small pro�t won early is better than none realized late. From their perspective, bidders

with middling values face competition from more than just one bidder in the �rst phase,

and tend to bid "as if" the number of buyers after their good is greater than one.

Bidders with very high values, on the other hand, tend to be con�dent that there is

at least one other bidder with a value higher than their competitor. In addition, these

bidders understand that by winning in later phases, they can obtain their good at a lower

price. Hence, bidders with high valuations tend to underbid in the early phases - sometimes

even below their lower-valued competitor - only to bid more aggressively in later phases

in the hope of winning the good at a cheaper price. These high-value bidders are by far

a minority, however, so the point is that for the vast majority of bidders they behave as

if there were many bidders that must be beaten if they are to be successful in attaining a

positive surplus.

A similar logic applies to the NIRTC auctions except here the motivation is slightly

di¤erent. Here, especially in the �rst round, bidders realize that unless they have a very

high value they are likely either not to win a good at all (as was true in the RTC case) or,

even worse, win one that they do not want and therefore su¤er a loss. This creates even

more pressure on them to bid high in the �rst or second round where they have to beat

many bidders to succeed.

A parsimonious way to model the auctioneers�wisdom and our subjects�experience is

to assume that bidders bid as if there are more buyers who are after their good. That

is, since there are eight bidders in total, each subject in a RTC auction behaves as if he
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compete with n other subjects over his good, where 2 < n � 8:
To investigate this possibility, we perform the following exercise. For each of the four

RTC formats we compute the equilibrium bids across the phases when K = 4 and n � 2:
For each value of n � 2 we compute the mean squared error (MSE) between all bids

observed in the experiment and the corresponding equilibrium bids. We then search for

the value of n that minimizes the MSE. Table 6 presents the mean squared errors for

n = 2; : : : ; 8:14

Table 6

Table 6 may be interpreted as saying that subjects in the RTC(4; 4; 2) bid as if they

coordinated on the SPBE of a RTC(4; 4; 6) in the sense that n = 6 minimized the MSE

for this auction format. Moreover, the MSE of n = 6 is lower than the MSE of n = 2 by

more than 30%. Notice that if the exercise is carried out for each treatment separately,

the mean squared error is consistently minimized for either n = 6 or n = 7: The absence of

variance in the optimal estimate of n across treatments lends credibility to the idea that

bidders bid as if there is a larger number of bidders interested in their good.15

To provide further evidence in support of our hypothesis that subjects bid as if they

were facing �ercer competition than they actually did, we plotted the average bid in each

phase for each auction format. We then compared these bids with the SPBE bid function of

each phase computed once according to n = 2 and once according to the MSE-minimizing

n = 6: The resulting graphs for each auction format are presented in Figures 3a� 3d:

Figures 3a-3d

As evident from the graphs, the equilibrium bids computed for the MSE-minimizing

n provide a good �t for the bidding patterns observed in the RTC auctions and the NIRTC

auctions. Compared with the equilibrium bids n = 2, the actual bidding data �fan-in�

upward from the origin (see Figures 3a and 3b). This feature of the data is in line with the

predictions based on n = 6 that also fan-in compared to the n = 2 predictions. Remarkably,

14Our approach here is equivalent to saying that subjects misperceive the probability that their good will
be taken in each phase. However, subjects still believe that they all face the same competition. They do
not realize that this belief, together with the above misperception, is not consistent with the total number
of bidders in the auction.
15The assumption that bidders bid as if there is more competition than actually present does not alter

the predictions for the (O)GBG auctions. There, bidders have a weakly dominating strategy to submit
their values, independent of the perceived number of competitors.
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the NIRTC auctions produce the opposite deviation from the n = 2 predictions. Here, �rst

phase actual bids are above the n = 2 predictions while the last phase actual bids are below

the n = 2 predictions (see Figures 3c and 3d). Thus, the actual data fan-out compared to

the n = 2 predictions. Again, this bias is consistent with the n = 6 predictions that also

fan-out compared to the n = 2 predictions.16

Figures 3a-3d

Note that in Figures 3a-3d the mean bid appears to be concave and non-monotonic.

That is, for low and intermediate values actual bids increase approximately linearly in

value as predicted by the model, but for high values the bids increase less than linearly

and sometimes even decrease. This feature is consistent with our earlier explanation since

high-valued bidders choose to wait in early rounds and take their chances winning the good

later in the auction when its price falls. The extreme concavity observed in the �gure is a

bit misleading and is caused by the fact that the mean bid is pulled down by a few bidders

with extremely high values who deliberately tried to lose in the early phases by submitting

extremely low bids.17 Since the graphs present the mean bid at each value, these outliers,

combined with the small numbers of people with such high values, have an exaggerated

in�uence on the graphs.

Assuming bidders behave as if the number of buyers per good is the value of n that

minimizes the MSE, what are the expected revenues in equilibrium? In Table 5 a row is

added that lists the expected revenues of the treatments when n = 6: To be precise, in this

row revenues are calculated for RTC(4,4,6), RTC(4,3,6), NIRTC(4,4,6) and NIRTC(4,3,6),

respectively. Notice that of all three models considered in Table 5, the model that makes the

as if n = 6 assumption comes closest to the actual revenue in each of the four treatments.

Another important feature of the as if n = 6 model is that it gets the revenue comparison

between the two RTC treatments right. In accordance with the data, for n = 6 the model

predicts that quantity restriction leads to more aggressive bidding, but that the rise in bids

is not enough to o¤set the loss of revenue from the last phase. In fact, for n higher than 2

16An alternative explanation for the NIRTC bidding data is that subjects su¤er from an attentional
bias, as suggested by Salmon and Iachini (2005). According to this explanation, players underestimate the
probability that they will receive a less preferred good. We do not explore this possibility here any further,
because an attentional bias cannot explain the high bids observed in the RTC auctions, where remaining
bidders know for sure that their preferred good is still available.
17One extreme example of this is a bidder with a value of 96 who bid zero in the �rst and second phase,

but bid his value in the third phase and won.
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quantity restriction starts raising revenue only when a higher number than 4 goods is o¤ered

for sale (see also Proposition 4). Our results underline the revenue enhancing potential of

quantity restriction in RTC auctions, but they also show that quantity restriction works

�less quickly�than predicted by the standard model.

6 Concluding Remarks

This paper examines a detail-free mechanism for selling multiple goods. This mechanism

proceeds sequentially where in each phase the seller auctions a right-to-choose one of the

available goods. If all goods are sold, then this right-to-choose auction is e¢ cient. We

proposed two detail free modi�cations that introduce ine¢ ciency into the RTC auction:

restricting quantity and witholding information.

The RTC auction has the desirable property that it can be executed independently

of the distribution of buyers�valuations and regardless of whether or not the goods are

substitutes for some of the buyers. In this paper we highlight another desirable feature

of this auction: the RTC auction induces an aggressive bidding behavior that generates a

substantially higher revenue than that predicted by the theory. Moreover, in an experi-

mental setting where the theoretical optimal auction is known, the RTC auction raised on

average more revenue than the theoretical optimal auction.

This �nding has the following implications. First, sellers with multiple goods, each

having a thin market, may bene�t from thickening those markets via a RTC auction. In

particular, in an environment where the optimal auction is di¢ cult to compute (either

because there is not enough information or because of multi-dimensionality), the RTC

auction seems especially desirable. Second, our �ndings may explain the popularity of the

RTC format in the real-estate market even though it is not the theoretical optimal auction

in these environments. Our experimental results suggest that perhaps the RTC format

was ultimately adopted because it proved to be better in terms of raising revenue than

alternative procedures.

Finally, our �ndings suggest a new behavioral approach to mechanism-design: the de-

sign of mechanisms that take advantage of certain behavioral regularities that individuals

exhibit. By understanding how di¤erent biases can be manipulated by various procedural

aspects, one may be able to design simple, robust mechanisms that perform better than

what our standard theory predicts.
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Appendix A: Proofs

For ease of exposition, in what follows bidders will be labeled by their values, e.g., a bidder with
value v will be referred to as �bidder v�. We shall also use the notation Y (m)i to denote the i-th
order statistic of m independent draws from [0; 1] (e.g., Y (Nk)

1 denotes the highest order statistic
among the remaining bidders in phase k).

Proof of Proposition 1. We need to show that the RTC(K;K; n) auction has a SPBE of the
following form:

bk (v) =
Nk � (K � k + 1)

Nk � 1
v (A1)

where Nk denotes the number of bidders in round k.
Clearly, the �nal phase of the auction, phase K, is simply a standard second-price auction.

Hence, bK(v) should be equal to v. Indeed, by letting k = K in equation (A1) we obtain

bK(v) =
Nk � 1
Nk � 1

v = v

It remains to show that (A1) holds for all k < K a bidder with valuation v. This can be done
by applying the techniques in Milgrom and Weber (2000) for solving sequential auctions. Consider
the highest valuation bidder in phase k. Label this bidder by the index h and denote his value by v.
Suppose bidder h deviates from (A1) and bids just below �kv. Since the only case in which these
two bids result in di¤erent outcomes is when the second highest valuation is also v, we can compare
the expected payo¤s from these two bids, conditional on this �pivotal� event. Bidding �kv leads
to an expected pro�t of v � �kv; whereas bidding slightly below results in losing the phase, having
the desired good available in the next phase with probability

n(K � k)
n(K � k + 1)� 1

and winning that phase with an expected pro�t of

v � �k+1E[Y
Nk+1�1
1 jY Nk+1�1

1 � v] = v[1� �k+1
Nk+1 � 1
Nk+1

]

The optimal bidding function balances the gains and losses from this small deviation, which implies
the following equation for all k < K :

1� �k =
�
Nk�2
n�1

��
Nk�1
n�1

� � �k+1�Nk � n� 1Nk � 1

�
(A2)

Since �K = 1; the solution to this di¤erence equation yields (A1).
By a similar argument, one can show that (A1) also balances the gains and losses between

bidding �kv in phase k and bidding just above it. k

Proof of Proposition 2. The proof is essentially the same as the proof of Proposition 1. The
only change is that bK�1(v) = v, given that round K � 1 is the �nal round. k
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Proof of Proposition 3. When bidders bid their value in the GBG(K;n), and when they
follow the SPBE of the RTC(K;K; n), as given in Proposition 1, then (1) the allocation of goods in
both auctions is e¢ cient, and (2) the expected payment of a bidder with value zero is zero. Hence,
by the Revenue-Equivalence-Theorem, both auctions yield the same expected revenue. k

Proof of Proposition 4. We begin by introducing a few helpful notations:

� P denotes the set of all partitions of nK order statistics into K groups of n. An element in
P (i.e., a particular partition) is denoted P . If the i-th order statistic is in the same group as
the j-th order statistic, then we say that the i-th and j-th order statistics demand the same
good.

� Let �Kk v be the equilibrium bid function for RTC(K;K; n).

� Let �K�1k v be the equilibrium bid function for RTC(K;K � 1; n).

Fix some partition P 2 P. Suppose we run both a RTC(K;K; n) and a RTC(K;K � 1; n)
for this given P . Because the partition is held �xed, the set of order statistics who win is exactly
the same in RTC(K;K; n) and in RTC(K;K � 1; n). Moreover, the order statistic, whose bid is
paid in each of the �rst K � 1 rounds, is also the same in both auctions. Let BK (P ) be the set of
expected prices paid in the �rst K � 1 rounds of RTC(K;K; n). Similarly, let BK�1 (P ) be the set
of expected prices paid in the �rst K � 1 rounds of RTC(K;K � 1; n). Then

BK (P ) =

(
�K1

 
N � �P1
N + 1

!
; : : : ; �KK�1

 
N � �PK�1
N + 1

!)

BK�1 (P ) =

(
�K�11

 
N � �P1
N + 1

!
; : : : ; �K�1K�1

 
N � �PK�1
N + 1

!)

where N��Pk
N+1 is the �Pk + 1 order statistic, such that �

P
1 = 1 and n � �Pk+1 � �Pk � 1. We de�ne

�(P ) �
�
�P1 ; : : : ; �

P
K�1

�
.

For the given partition P , the total expected gain from quantity restriction is equal to the
following sum:

K�1X
k=1

�
�K�1k � �Kk

� N � �Pk
N + 1

!
(A3)

While the expected loss is equal to N��K
N+1 . From Propositions 2.1 and 2.2 it follows that �

K�1
k ��Kk =

1
Nk�1 . Hence, expression (A3) can be rewritten as follows:

K�1X
k=1

�
1

Nk � 1

� 
N � �Pk
N + 1

!
(A4)

Given P , quantity restriction raises expected revenue if and only if

K�1X
k=1

�
1

Nk � 1

� 
N � �Pk
N + 1

!
>
N � �PK
N + 1

(A5)
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Multiplying both sides of (A5) by N + 1, we obtain that inequality (A5) holds if and only if

K�1X
k=1

 
N � �Pk
Nk � 1

!
> N � �PK (A6)

We denote the LHS and RHS of (A6) by G(P ) and L(P ) respectively. Hence, given P , the expected
gain from quantity restriction is at least as large as the expected loss if and only if G(P ) � L(P ).

Let Pj � P be the set of partitions with the property that �PK = K + j for every P 2 Pj ,
where j 2 f0; 1; : : : ; (K � 1)n+ 1g. Note that for any j every P 2 Pj satis�es �Pk � k + j for
1 � k � K � 1. This implies that for any j and any P 2 Pj , we have

G(P ) �
K�1X
k=1

�
N � (k + j)
Nk � 1

�
=

K�1X
i=1

nK � (K � i+ j)
(i+ 1)n� 1

L(P ) = N �K � j = (n� 1)K � j

Hence, G(P ) � L(P ) if and only if

K�1X
i=1

(n� 1)K � j
(i+ 1)n� 1 +

K�1X
i=1

i

(i+ 1)n� 1 � (n� 1)K � j

Let 	(K;n) �
hPK�1

i=1
1

(i+1)n�1

i
� 1. Then the above inequality holds if and only if

[(n� 1)K � j] 	 (K;n) +
K�1X
i=1

i

(i+ 1)n� 1 � 0 (A7)

De�ne K� (n) to be the smallest positive integer that satis�es 	(K;n) � 1. Such an integer exists
because 	(K;n) increases with K and tends to in�nity as K !1. It follows that inequality (A7)
holds for all K � K� (n). Note that because 	(K;n) decreases with n, the integer K�(n) increases
with n.

We now turn to show that when n = 2 (as is the case in our experimental design) quantity
restriction raises expected revenue for all K > 2. First, it is straightforward to verify that for
K = 3, selling two out of three goods raises more expected revenue than selling all three goods
(R(3; 2; 2) = 38

35 , while R(3; 3; 2) = 1). It remains to show that quantity restriction raises expected
revenue for all K > 3. We begin by identifying the set of partitions for which quantity restriction
lowers expected revenue.

Lemma A1. G(P ) < L(P ) only if P 2 P0.
Proof. Assume not. Then there exists a partition P 2 PnP0 for which G(P ) < L(P ). First,

we claim that for every P 2 P and 1 � k � K�1 the following must hold: �Pk � 2k�1. This follows
from the fact that �P1 = 1 and n � �Pk+1 � �Pk � 1 for every P and k. Next, we claim that for all

P 2 P and 1 � k � K�1 we have N��
P
k

Nk�1 � 1. Suppose not. Then 2K��
P
k < 2(K�k+1)�1, which

implies that �Pk > 2k � 1, a contradiction. Therefore, G(P ) � K � 1 for all P 2 P, where equality
holds if K = 2. Because each P 2 PnP0 satis�es L(P ) � K � 1, we have that G(P ) � L(P ), in
contradiction to our initial assumption. k
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By Lemma A1, there are exactly (K � 1)! partitions for which G(P ) < L(P ). Moreover,
for each of these partitions, L(P ) � G(P ) = K � G0. Because each partition P is equally likely,
EP2P [G(P )� L(P )] > 0 if there exist at least (K�1)! partitions for which G(P )�L(P ) � K�G0,
where the inequality is strict for at least one of these partitions.

Let P� � PK be a set of partitions with the property that for every P 2 P�, �(P ) =
(1; : : : ;K � 1). This set contains (K�1)! partitions. In addition, for every P 2 P�, G(P )�L(P ) =
G0 � 1. Thus, G0 � 1 > K �G0 if and only if G0 > 1

2 (K + 1). If K > 3, then the latter inequality
holds because G0 � K � 1. k

Proof of Proposition 5. We need to show that for all q < K, the NIRTC(K;K � q; n)
auction has a SPBE in which bidders use a linear bid function in every round, where the bidding
coe¢ cients (�k)

K�q
k=1 are given by

�K�q =
n (q + 1)

(n� 1)K + q + 1
(A8)

and the unique solution to the following system of di¤erence equations

N (n� 1)
NkNk+1

= �k �
Nk+1 � 1
Nk+1

�k+1 (A9)

The proof proceeds in three steps. First, we derive pk, the probability that a bidder�s good
is still available in round k. Second, we use the expression for pK�q to derive the bid in the last
round. Third, we verify that the bid function (A9) balances the gains and losses from bidding just
above or just below the equilibrium bid, assuming all other bidders use (A9) :

Step 1. Consider some bidder i in round k of the auction. There were k�1 winners in previous
rounds. For each one of the k� 1 winners, there are n� 1 bidders among the remaining nK� k+1
bidders whose good was taken away.18 There are

�
nK�k+1
(n�1)(k�1)

�
possible combinations of selecting

from among the nK � k + 1 bidders in round k, the n� 1 bidders whose good was taken away. Of
these combinations,

�
nK�k

(n�1)(k�1)
�
do not include bidder i: Therefore, the probability that bidder i�s

good is still present in round k is

pk =

�
nK�k

(n�1)(k�1)
��

nK�k+1
(n�1)(k�1)

� = n (K � k + 1)
nK � k + 1 (A10)

Step 2. The subgame that begins with the �nal round of the auction (round n) is a one-shot
second price auction. Therefore, it is a weakly dominating strategy for each bidder to bid his
expected value, i.e., his value v multiplied by the probability that his good is still available. Using
(A10) ; we have

bK�q(v) = pK�qv =
n (q + 1)

(n� 1)K + q + 1
v (A11)

18To see why, suppose K = 3 and n = 2. Consider the winner in the �rst round. Suppose this winner
takes the good of the winner in the next round. Then the winner in round 2 will necessarily take the good
of two remaining bidders. Thus, the winners in the �rst two rounds have taken away a good desired by two
other bidders.
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Step 3. Suppose that in each phase k 2 f1; : : : ;K � qg, bidders use a continuous increasing
bid function bk(v) that maps [0; 1] onto [0; 1]. Consider the subgame that begins in some phase
k of the auction. The SPBE bid in this phase is the highest price a bidder is willing to pay,
conditional on the �pivotal� event that both he and another bidder have the highest valuation.
By the same argument given in the proof of Proposition 1; the willingness to pay of the highest
valuation bidder in round k must therefore be equal to the di¤erence between the expected value of
winning in round k and the expected value of winning in the next round (where both expectations
are computed conditional on the above pivotal event). Hence,

pkv � bk (v) = pk+1v � bk+1
h
E(Y

(nK�k�1)
1 jY (nK�k�1)1 < v

i
(A12)

From Step 1 and our assumption that bidders�values are independently drawn from the uniform
distribution on [0; 1], it follows that equation (A12) can be rewritten as follows:�

n (K � k + 1)
nK � k + 1

�
v � bk (v) =

�
n (K � k)
nK � k

�
v � bk+1

�
nK � k � 1
nK � k v

�
(A13)

Given Step 2, we can solve for bK�q�1(v) by substituting (A11) for bK�q(v). Proceeding inductively,
we can solve for bk(v) for k = 1; : : : ;K�q�1. It is easy to see that for every k, the bidding function
has the linear form bk(v) = �kv. Moreover, for every k the coe¢ cient �k is obtained by solving
a linear equation, hence there is a unique solution for each �k. By substituting �kv for bk(v) in
(A13) and rearranging we obtain equation (A9). k

Proof of Proposition 6. By Proposition 3; it su¢ ces to compare the expected revenue of
NIRTC(K;K; 2) with that of GBG(K;n): Let �Nk denote the coe¢ cient of the linear bidding
strategies employed in the SPBE of NIRTC(K;K; n).

From Proposition 5 it follows that for a NIRTC auction with no quantity restriction, the bidding
coe¢ cients in each phase may be expressed by the following formula:

�Nk =
N(n� 1)
Nk+1

KX
i=k

1

Ni

Therefore, the expected revenue of NIRTC(K;K; n) is given by

KX
k=1

�Nk

�
N � k
N + 1

�
=
N(n� 1)
N + 1

KX
k=1

k

Nk
(A14)

It follows that the expected revenue of NIRTC(K;K; n) is greater than the expected revenue of
GBG(K;n) if, and only if,

N(n� 1)
N + 1

KX
k=1

k

Nk
>

�
n� 1
n+ 1

�
K (A15)
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For n = 2 inequality(A15) becomes:

2K

2K + 1

KX
k=1

k

2K � k + 1 >
K

3
(A16)

This inequality holds if, and only if,

KX
k=1

k

2K � k + 1 >
K

3
+
1

6
(A17)

To show that this inequality (A17) holds for all K � 2 rewrite the LHS of this inequality as follows:

KX
k=1

k

2K � k + 1 =

KX
k=1

(�2K + k � 1) + (2K + 1)

2K � k + 1

= �K + (2K + 1)
KX
k=1

1

2K � k + 1 (A18)

Using (2) we obtain that inequality (A17) holds if and only if

KX
k=1

1

2K � k + 1 >
8K + 1

6(2K + 1)

The above inequality can be simpli�ed further as follows:

2KX
j=K+1

1

j
>
2

3
� 1

4K + 2
(A19)

We now proceeds by induction on K. It is easy to verify that (A19) holds for K = 2. Assume
it holds for some K > 2. We wish to show that this inequality also holds for K + 1. In order to
show this it su¢ ces to prove that when K is raised to K +1, the net increase to the LHS is greater
than the net increase to the RHS. Thus, to prove the inductive step we need to establish that

1

2K + 2
+

1

2K + 1
� 1

K + 1
>

�1
4K + 6

+
1

4K + 2

m
1

2 (2K + 1)
� 1

2 (K + 1)
>

�1
2 (2K + 3)

m
1

2

�
1

2K + 1
+

1

2K + 3

�
>

1

2K + 2
(A20)

Because the function 1
2K+i is convex for i = 1; 2; : : :, it follows that inequality (A20) must hold. k
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Proof of Proposition 7. Let bqk(v) denote the symmetric equilibrium bidding function in
phase k of NIRTC(K;K � q; n). Because the highest K � q bidders win in NIRTC(K;K � q; n),
we have that R(K;K � q � 1; n)�R(K;K � q; n) is equal to the following expression:

K�q�1X
k=1

�
�q+1k � �qk

��Nk � 1
N + 1

�
� �qK�q

�
N � (K � q)
N + 1

�
(A23)

where �q+1k and �qk are the bidding coe¢ cients of the linear bidding functions b
q
k(v) and b

q+1
k (v).

We now show that expression (A23) is negative.
By (A12), �qK�q�1 and �

q
K�q must satisfy the following equation:

pK�q�1v � �qK�q�1v = pK�qv � �
q
K�q

�
NK�q � 1
NK�q

�
v (A24)

By (A11) it follows that pK�q�1 = �q+1K�q�1 and �
q
K�q = pK�q Thus, equation (A24) can be

rewritten as follows:

�q+1K�q�1 � �
q
K�q�1 =

�qK�q
NK�q

(A25)

Hence, �
�q+1K�q�1 � �

q
K�q�1

�
(NK�q � 1) =

�
NK�q � 1
NK�q

�
�qK�q

Using (A12) we have that for k < K � q � 1,

pkv � �qkv = pk+1v � �qk+1
�
Nk+1 � 1
Nk+1

�
v (A26)

pkv � �q+1k v = pk+1v � �q+1k+1

�
Nk+1 � 1
Nk+1

�
v (A27)

Thus, subtracting (2) from (2) we obtain

�q+1k � �qk =
�
�q+1k+1 � �

q
k+1

��Nk+1 � 1
Nk+1

�
(A28)

Hence, using (A25) we have that for all k � K � q � 1,

�q+1k � �qk =
 
�qK�q
NK�q

!
�K�q�1l=k+1

�
Nl � 1
Nl

�
(A29)

Note that both the NIRTC(K;K � q; n) and the NIRTC(K;K � q � 1; n) share the following
property for k � K � q � 1: Nk � 1 = Nk+1. Using this property, equation (A29) becomes:

�q+1k � �qk =
�qK�q
Nk+1

(A30)

Multiplying both sides of equation (A30) by Nk � 1 and summing from k = 1 to k = K � q � 1 we
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obtain

K�q�1X
k=1

�
�q+1k � �qk

�
(Nk � 1) =

K�q�1X
k=1

�
Nk � 1
Nk+1

�
�qK�q (A31)

= (K � q � 1)�qK�q
< [(n� 1)K + q]�qK�q

By dividing both sides of the last inequality in (2) by N + 1 we obtain (A23). k

Proof of Proposition 8. Consider the market for good k. Our assumptions on the demand
in this market satisfy the assumptions made in Riley and Samuelson (1981). A straightforward
application of their model implies that the optimal mechanism in the market for good k can be
implemented by a second price auction with a reserve price of 12 .

Now consider any general mechanism � for selling all the K goods. Because all bidders draw the
value for their preferred good independently from the same distribution, and because the number of
buyers who value each good is the same, the expected revenue obtained by � must be equal to nK
times the expected payment made by a single bidder in that mechanism. This means that by an
appropriate choice of a reserve price (which may be random) one can generate 1

K of the expected
revenue obtained by � by using a second-price auction for good k. But this means, by the argument
in the previous paragraph, that the highest expected revenue is obtained by conducting K separate
second-price auctions with a reserve-price of 12 . k

Appendix B: Instructions RTC(4,3,2,)

Welcome to this experiment on decision-making! You can make money in this experiment.
Read the instructions carefully. There is paper and a pen on your table. You can use these during
the experiment. Before the experiment starts, we will hand out a summary of the instructions and
there will be one practice period.

THE EXPERIMENT
You will earn points in the experiment by purchasing a good you value in a market. At the

end of the experiment your points will be exchanged to dollars. Each 15 points will yield 1dollar.
At the beginning of the experiment you will receive a starting capital of 150 points that you will
not have to pay back at the end of the experiment. You will also be able to earn more money
as the experiment progresses. The experiment consists of 16 periods. Your total earnings in the
experiment will be equal to the sum of the starting capital and your earnings in all 16 periods.

Each period you will be allocated to the same group of eight persons and within each period
there will be three phases. Your earnings will be determined by your own choices and the choices
of the other participants in your group. In each group four �ctitious goods will be available for sale
in each period: good A, good B, good C and good D.

VALUES OF THE GOODS
Each participant will want to buy only one of the goods in a period: the value for this good to

him or her will lie between 0 points and 100 points, and each number between 0 and 100 is equally
likely. That is, the value of the good is equally likely to be 25 as it is to be 100 as it is to be 51
etc. The other goods have no value (=0 points) to the participant. Each participant will receive a
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di¤erent value for her or his preferred good (that is, the one good for which she or he has a positive
value). The value of the preferred good of the one participant does not depend on the values of
the preferred goods of the other participants. The value of your preferred good is therefore (very)
likely di¤erent from those of others. At the start of a period you will get to know which one is your
preferred good and how much you value it. You will not know the values of the preferred goods of
other participants, other participants will not know the value of your preferred good. Among the
seven other participants in the group there will be one other who also values the same good as you.
This means that there is exactly one other person in your group who wants to buy the same good
as you do and his or her value is also determined randomly from the interval between 0 and 100.

Which good a participant prefers changes (randomly) from period to period. This implies that
the person who prefers the same good as you do changes (randomly) from period to period. Each
participant also receives a new value for the preferred good in each period. The value for a preferred
good in the one period will not depend on the value for the preferred good in any other period.

SALE OF THE GOODS
Rather than sell the goods one by one, the market you participate in will, in each period, sell

�rights to choose�one by one. If in any period you win one of the rights to choose you will be able
to choose which of the goods remaining at that time you want. To be more precise, each period
consists of three phases. In each phase a �right to choose�is sold to the highest bidder. In the �rst
phase all eight bidders in a group will submit a bid for the �rst right to choose. The highest of
these eight bidders wins the �rst right to choose and chooses the good that she or he prefers. At
the end of the �rst phase, every bidder will be informed whether she or he won the �rst phase or
not. The winner of the �rst phase and the person that prefers the same good as the winner will no
longer participate in the remaining phases of this period and will have to wait until the next period
starts.

Then the second phase starts, where the remaining six bidders (whose goods are still unsold)
submit a new bid for the second right to choose. At the end of this phase, each bidder is informed
whether he or she was the winner. The highest bidder wins and chooses the good that he or she
likes. This winner and the one other buyer who wants the same good as the winner will no longer
participate in the remaining phase of this period and will have to wait until the start of the next
period. In the third and �nal phase the remaining four bidders submit a new bid for the third right
to choose. The highest bidder wins the third right to choose and selects the good that he or she
likes.

Notice that only three of the available four goods are sold in a period. Which goods are sold
depends on the bids of the participants.

PRICES OF THE GOODS
In each phase, the winner of a good pays a price that depends on the bids of that phase. Each

participant submits a �drop out price�: this amount re�ects what the participant maximally wants
to pay for the right to choose in that phase. This drop out price has to be an integer number
between 0 and 100 points. The winner and winning price in any phase is determined as follows:
First, the computer raises the price from 0 to 100 points. If the price reaches the �drop out price�
of a participant, this participant drops out and will not win the right to choose in the current
phase. This process continues until the level where all but one participant have dropped out. The
remaining bidder wins the right to choose and pays a price equal to this level. Notice that in this
way the price will be equal to the second highest submitted drop out price.

If two (or more) participants have submitted the same drop out price which happens to be the
highest, then one of these bidders will be randomly selected. Only in this case the winner pays a
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price equal to the own submitted drop out price.
The buyer of a right to choose will automatically receive the preferred good. The pro�t to the

bidder from winning will be equal to her or his value minus the price she or he pays, so pro�t =
(value-price). The only person who is told the price at which a good was sold in a particular phase
is the winner of that phase. Participants that do not buy a right in a period receive a pro�t of 0 in
that period.

Notice that the highest bidder in a phase can make a loss if she or he pays a price higher than
her or his value for the good. This can only happen if the bidder submits a drop out price higher
than her or his value, because in that case the second highest drop out price may also be higher
than this value. For example, suppose Bob whose value for good A is 10 submits a drop out price
of 15. If 15 is the highest drop out price and the second highest drop out price is 12, Bob wins
goods A but incurs a loss of 2.

EXAMPLE
The procedure to sell the goods is now illustrated with an example. THE NUMBERS IN THE

EXAMPLE ARE ARBITRARILY CHOSEN.
Assume that the winners of the �rst two phases have selected goods A and C. Then the four

bidders who prefer either good B or good D bid in the third phase for the third and �nal right to
choose. Assume that Bob submits a drop out price of 44, Arthur submits a drop out price of 23,
Lisa submits a drop out price of 39, and Susan submits a drop out price of 59. Say that Bob and
Arthur value the good B while Susan and Lisa value good D. Then the result will be as follows.
The computer raises the price from 0. At a price of 23 Arthur drops, at a price of 39 Lisa drops
and at a price of 44 Bob drops. The remaining bidder Susan wins her good and pays a price equal
to 44. If Susan happened to value the good at 70 her pro�t would be 70-44=26.

PROCEDURE TO SUBMIT A BID
In the upper middle part of the screen you see how you can make your decision in a phase. The

cursor on the bar re�ects the drop out price that you are willing to submit. By pushing the �right
arrow�key on your keyboard, you can increase your drop out price and by pushing the �left arrow�
key you can decrease your drop out price. Alternatively, you can use the mouse to drag the slider
to your preferred drop out price. Once you are satis�ed with your drop out price, you push the
�CONFIRMATION�button. Then you will be asked whether you are sure. If you answer �NO�then
you get the possibility to reconsider your drop out price. Once you answer �YES�your decision is
�nal. In the upper left part of the screen you see the good you want listed after �Type�. You also
see the balance of your total earnings listed after �Earnings�.

QUESTION ABOUT THE PRICE OF A GOOD
Assume that in the second phase your drop out price equals 61, while the drop out prices of

the other �ve remaining bidders equal 23, 35, 47, 49 and 55. What is the price that you will have
to pay for your good?

[Answer: 55. The computer raises the price until the level where all but one participant have
dropped out. This way the price will be equal to the second highest submitted drop out price,
which in the example is 55. ]

FINAL PAYOFFS
When a period is over the next one will begin. Here each participant will be assigned a new

good to value and that value will be randomly determined. Hence, the person who values your
good in this period will probably not be the same one who valued it in the previous period - that
person will be determined randomly in each period. The rules for this period will be the same as
those before it and the �nal payo¤ you receive at the end of the experiment will be equal to the
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sum of what you have earned in all periods plus the starting capital. There will be a total of 16
periods in the experiment.

END
You have reached the end of the instructions. If you want to read some parts of the instructions

again, push the button BACK. When you are ready, push the button READY. When all participants
have pushed READY, the experiment will start. When the experiment has started, you will NOT be
able to return to these instructions. Before the experiment is started, a summary of the instructions
will be handed out and a practice period will be carried out. Your earnings during the practice
period will NOT be added to your total earnings.

If you still have questions, please raise your hand!
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Figures 1a-1b  
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Figures 2a-2b 

Notes: For every value the average of actual bids in the interval [value-2,value+2] is 
shown. Bid i refers to the bids in phase i. CARA j refers to the CARA predictions for 
phase j (r=0.07). 

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

value

CARA 1
CARA 2
CARA 3
CARA 4
bid 1
bid 2 
bid 3
bid 4

CARA4

CARA1

CARA3

bids RTC(4,4,2)

CARA2

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

value

CARA 1
CARA 2
CARA 3
bid 1
bid 2 
bid 3

CARA3

CARA1

CARA2

bids RTC(4,3,2)



Figures 2c-2d 

Notes: For every value the average of actual bids in the interval [value-2,value+2] is 
shown. Bid i refers to the bids in phase i. CARA j refers to the CARA predictions for 
phase j (r=0.07). 
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Figures 3a-3b 

 

Notes: For every value the average of actual bids in the interval [value-2,value+2] is 
shown. Bid i refers to the bids in phase i. Nsh (n=2) j refers to the Nash prediction for 
phase j for the case n=2. Nsh (n=6) k refers to the Nash prediction for phase k for the 
“as if case” n=6. Nash predictions are identical in the final phase of the RTC auction. 
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Figures 3c-3d  

Notes: For every value the average of actual bids in the interval [value-2,value+2] is 
shown. Bid i refers to the bids in phase i. Nsh (n=2) j refers to the Nash prediction for 
phase j for the case n=2. Nsh (n=6) k refers to the Nash prediction for phase k for the 
“as if case” n=6.  
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Table 1 
Experimental Design 

 

treatment number of groups subjects per group  total 

RTC(4,4,2) 8 8 64 

RTC(4,3,2) 8 8 64 

NIRTC(4,4,2) 8 8 64 

NIRTC(4,3,2) 8 8 64 

GBG(4,2) 8 8 64 

OGBG(4,2) 8 8 64 

Total   384 
 
 
 
 

Table 2 
Equilibrium Bid Coefficients and Expected Revenues 

 

 
 

auction format 

 
 

phase 1 

 
 

phase 2 

 
 

phase 3 

 
 

phase 4 

expected 
revenue 
theory 

expected 
revenue 
values 

RTC(4,4,2) 4/7 3/5 2/3 1 133.3 136.2 

RTC(4,3,2) 5/7 4/5 1 NA 152.1 157.7 

NIRTC(4,4,2) 1599/2205 214/315 44/75 2/5 152.1 155.2 

NIRTC(4,3,2) 115/147 47/63 2/3 NA 147.6 149.4 

GBG(4,2) 1 NA NA NA 133.3 140.1 

OGBG(4,2) 1 NA NA NA 166.7 174.0 



Table 3 
Actual Revenues 

 

 phase 1 phase 2 phase 3 phase 4 total 

RTC(4,4,2) actual 
Nash 

72.1 (14.4) 
45.2 (7.3) 

61.2 (15.8) 
39.2 (9.6) 

47.9 (18.2) 
32.6 (12.4) 

22.6 (15.1) 
19.1 (13.3) 

203.7 (51.1) 
136.2 (33.7) 

RTC(4,3,2) actual 
Nash 

74.2 (14.3) 
56.4 (9.4) 

64.9 (15.9) 
52.5 (12.7) 

49.7 (18.8) 
48.7 (18.9) 

NA 
NA 

188.7 (42.4) 
157.7 (35.5) 

NIRTC(4,4,2) actual 
Nash 

77.3 (14.8) 
57.5 (9.7) 

62.3 (15.5) 
45.7 (10.3) 

37.6 (16.4) 
33.6 (9.8) 

19.4 (12.6) 
18.5 (7.0) 

196.7 (46.7) 
155.2 (32.1) 

NIRTC(4,4,2) actual 
Nash 

79.9 (14.3) 
62.1 (10.0) 

64.3 (16.3) 
49.5 (10.6) 

42.9 (18.3) 
37.8 (11.0) 

NA 
NA 

187.1 (41.5) 
149.4 (27.6) 

GBG(4,2) actual 
Nash 

NA 
NA 

NA 
NA 

NA 
NA 

NA 
NA 

145.1 (55.2) 
140.1 (52.9) 

OGBG(4,2) actual 
Nash 

NA 
NA 

NA 
NA 

NA 
NA 

NA 
NA 

178.8 (52.4) 
174.0 (55.9) 

 
 Note: standard deviations are listed in parentheses. 

 
 
 

Table 4 
Efficiency 

 

 ordinal efficiency cardinal efficiency 

 predicted Actual predicted actual 

RTC(4,4,2) 100.0% 92.6% 100.0% 98.2% 

RTC(4,3,2) 75.0% 69.7% 84.9% 83.4% 

NIRTC(4,4,2) 77.1% 66.8% 89.3% 79.9% 

NIRTC(4,3,2) 65.1% 56.3% 78.2% 71.5% 

GBG(4,2) 100.0% 92.4% 100.0% 98.3% 

OGBG(4,2) 78.9% 73.8% 87.7% 87.9% 
 



Table 5 
Theoretical and Actual Revenues 

 

 RTC(4,4,2) RTC(4,3,2) NIRTC(4,4,2) NIRTC(4,3,2) 

actual 203.7 188.7 196.7 187.1 

CARA, r=0.07 162.1 164.0 122.9 117.4 

risk neutral, n=2 133.3 152.1 152.1 147.6 

risk neutral, as if n=6 185.5 176.5 164.2 154.1 
 
 
 
 
 

Table 6 
Mean squared error bids (bid - prediction)2 

 

as if n all RTC(4,4,2) RTC(4,3,2) NIRTC(4,4,2) NIRTC(4,3,2) 

2 301.90 415.52 186.09 292.43 304.18 

3 223.32 252.43 120.31 240.15 264.07 

4 207.27 219.38 104.99 230.18 256.40 

5 203.34 212.21 100.54 227.48 254.55 

6 202.79 212.17 99.36 226.76 254.26 

7 203.33 214.30 99.35 226.70 254.46 

8 204.21 217.03 99.77 226.88 254.82 
 
 Notes: The table lists the mean squared error between bids and predictions for different “as if 
group sizes”. The column “all” pools all cases of all treatments, the other columns present the MSE per 
treatment.  


