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1. Introduction 

Crawford & Sobel (1982) introduced cheap talk games with asymmetric in-

formation, which have found many applications.1 Equilibrium selection is im-

portant in these games, as they tend to have multiple equilibria with very 

different levels of information transmission. In this paper, we test the Average 

Credible Deviation Criterion (ACDC), introduced in De Groot Ruiz, Offerman 

& Onderstal (2012a). Many other equilibrium refinements and solution concepts 

have been proposed for cheap talk games.2 These concepts, however, are not able 

to predict across a wider range of cheap talk games and only a few have been 

tested experimentally. In contrast, ACDC selects equilbria under general 

conditions. Its predictions are meaningful in previously analyzed settings and 

can organize behavior well in existing experiments meant to study other con-

cepts. 

ACDC generalizes binary stability criteria based on credible deviations, in 

particular neologism proofness (Farrell, 1993) and announcement proofness 

(Matthews, Okuno-Fujiwara & Postlewaite, 1991). These concepts are based on 

the observation that out-of-equilibrium messages can have a literal meaning and 

propose conditions under which messages are credible.3 Equilibria that admit 

such credible deviations are considered unstable. Unfortunately, in many games 

these criteria do not select a unique equilibrium. The idea behind ACDC is that 

the credible deviation approach is sound, but that the insistence on a binary 

distinction between stable and unstable equilibria is problematic. In particular, 

                                     
1 Applications range from the presidential veto (Matthews, 1989), legislative committees 

(Gilligan & Krehbiel, 1990) and political correctness (Morris, 2001) to double auctions (Mat-
thews & Postlewaite (1989); Farrell & Gibbons (1989)), stock recommendations (Morgan & 
Stocken, 2003) and matching markets (Coles, Kushnir, & Niederle, Forthcoming). 

2 The list includes neologism proofness (Farrell, 1993), announcement proofness (Matthews, 
Okuno-Fujiwara & Postlewaite, 1991), Partial Common Interest (Blume, Kim & Sobel, 1993), 
the recurrent mop (Rabin & Sobel, 1996) and No Incentive To Separate (Chen, Kartik & Sobel, 
2008) 

3 See Blume, DeJong, Kim & Sprinkle (1998) and Agranov & Schotter (2011) for studies on 
the role of language in cheap talk games. 
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ACDC assumes that credible deviations matter for the stability of equilibria but 

that they matter in a gradual manner. On this basis, ACDC can select most 

plausible equilibria (ACDC equilibria), even in games where no equilibrium is 

entirely stable.  

In this study, we test the assumption of ACDC that credible deviations mat-

ter gradually. In addition, to determine its value added more sharply, we test 

the predictions of ACDC in games where existing criteria are not predictive. We 

use the class of continuous external veto threat games introduced in De Groot 

Ruiz, Offerman & Onderstal (2012b). These games allow for a clean manipula-

tion of the size and frequency of credible deviations. Furthermore, they can have 

a large equilibrium set, which previous concepts cannot refine.  

Our experimental design consists of five veto threat games and allows us to 

test four hypotheses. First, we test whether credible deviations matter at all: do 

neologism proofness and announcement proofness have any bite indeed? Second, 

we test whether the ACDC equilibrium performs best if all equilibria are unsta-

ble according to neologism proofness and announcement proofness. Third, we 

look at whether the ACDC equilibrium in similar games performs worse when 

its stability according to ACDC decreases. Finally, we test whether ACDC can 

explain behavior in case there is a large set of equilibria. The experimental 

results are supportive of all four hypotheses. This provides evidence that ACDC 

is able to predict well. 

In order to better explain the dynamics of our data, we introduce a ‘neolo-

gism dynamic.’ The neologism dynamic is a simple best response dynamic with 

the additional feature that Senders send credible neologisms, which are also 

believed by Receivers. In contrast to a best response dynamic and a level-k 

analysis, the neologism dynamic is predictive. In particular, the neologism 

dynamic supports the conclusions of ACDC and can explain the main dynamic 

characteristics of the data.  

Turning to the literature, we see that relatively little experimental work exists 

on equilibrium selection in cheap talk games. Blume, DeJong & Sprinkle (2001) 

test the predictions of the Partial Common Interest (PCI) criterion in a series of 
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discrete games and compare it with neologism proofness.4 ACDC can explain 

Blume et al.’s experimental data at least as well as PCI (see De Groot Ruiz, 

Offerman & Onderstal (2012a)). Experimental work on the Crawford-Sobel 

uniform quadratic game provides evidence that the most informative equilibrium 

performs best (Dickhaut, McCabe & Mukherji (1995), Cai & Wang (2006) and 

Wang, Spezio & Camerer (2010)). 5 This is predicted by the No Incentive To 

Separate (NITS) criterion (Chen, Kartik & Sobel, 2008) as well as ACDC. 

Furthermore, it shows that as the bias parameter becomes smaller, the most 

informative equilibrium performs better, which is also predicted by ACDC. The 

present study is the first systematic experimental test of whether and to what 

extent credible deviations matter for the stability of cheap talk equilibria. In 

addition, it presents a rigorous test of ACDC in new experiments.6  

This paper has the following structure. In section 2, we discuss the theory we 

require to derive the hypotheses we wish to test in our experiment. We present 

the experimental games we study, introduce ACDC and discuss the issue of 

equilibrium selection. In section 3, we provide the experimental design. In 

section 4 we present the experimental results in relation to equilibrium selection. 

In section 5, we look at the dynamic aspects of our data and discuss the neolo-

gism dynamic. In section 6, we introduce and discuss two additional treatments 

to test the robustness of our results. Section 7 concludes. Proofs are relegated to 

Appendix A. 

                                     
4 A partition of the typeset satisfies PCI “if types in each partition element unambiguously 

prefer to be identified as members of that element, and there is no finer partition with that 
property.” The PCI criterion predicts that types in different elements send different messages. 

5 The focus of our paper is on what makes communication of private information credible. A 
different strand of the experimental literature deals with the question how players can credibly 
communicate their intentions (Davis & Holt (1988), Cason (1995), Charness (2000), Ellingsen & 
Johannesson (2004), Gneezy (2005), Charness & Dufwenberg (2006), Lundquist, Ellingsen, 
Gribbe & Johannesson (2009), Serra-Garcia, Van Damme & Potters (2011)). Crawford (1998) 
provides a survey of papers on cheap talk experiments and DellaVigna & Gentzkow (2010) 
review field evidence on persuasive communication. 

6 The model we present is a cheap talk bargaining game with asymmetric information. Ex-
perimental work on bargaining games with private information includes Radner & Schotter 
(1989), Forsythe, Kennan & Sopher (1991), Rapoport & Fuller (1998), Rapoport, Erev & Zwick 
(1995), Daniel, Seale & Rapoport 1998), Valley, Moag & Bazerman (1998), Schotter, Snyder & 
Zheng (2000) and Croson, Boles & Murnighan (2003).  
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2. Theory 

In this section, we develop the theory we use to construct the hypotheses for 

our experiment. In subsection 2.1 we introduce the game G(B), on which our 

main treatments are based, and apply existing refinements to this game. In 2.2, 

we introduce ACDC and show how it works out in G(B).  

2.1. G(B) 

G(B) is a two-player veto threats cheap talk game between an informed 

Sender and an uninformed Receiver.7 The outcome of the game x is a point in 

the interval [0, ]B  or the disagreement point ,d Ï   where B  stands for bound-

ary. The payoffs of the Receiver and the Sender are given by ( )RU x  and 

( , ) :SU x t   

 

(1) 

2
( ) 60   for all [0, ]

5
RU x x x B= - Î  

( , ) 60 | |  for all [0, ]SU x t x t x B= - - Î  

d d= =( ) ( , ) 0R SU U t  

 

On the interval, the Receiver prefers smaller outcomes to larger outcomes. The 

payoffs of the Sender on the interval depend on her type t, which is drawn from 

a uniform distribution on [0, ].B  The larger the distance between t and 

[0, ],x BÎ  the lower the Sender’s payoff. Both players receive a payoff of 0 if d  is 

the outcome, regardless of t. The Receiver prefers all outcomes on the line 

smaller than 150 to ;d  the Sender prefers d  to all outcomes on the line more 

than 60 away from her type t.  

At the start of the game, nature draws a type t. Everything is common 

knowledge, except t. The game then proceeds as follows. Nature informs the 

                                     
7 We will refer to the Sender as a ‘she’ and the Receiver as ‘he.’  
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Sender of t. Subsequently, the Sender sends a costless message m  to the Receiv-

er. Next, the Receiver proposes action [0, ].a BÎ  Finally, the Sender accepts (v 

= 1) or rejects (v = 0). If the Sender accepts, a is the outcome of the game, and 

if she rejects, d  is the outcome. Note that all messages are costless for the 

Sender. We assume 120B ³  because under this condition the boundary does 

not affect the set of equilibrium actions. The model is close to the cheap talk 

game with veto threats of Matthews (1989). The main difference is that in our 

model the disagreement point does not lie on the interval.  

A strategy for the Sender consists of a message strategy :T Mm   and an 

acceptance strategy : {0,1}.A Tn ´  The strategy of the Receiver is an action 

strategy a : M Aö .8 Let SS  be the set of Sender strategies and RS  the set of 

Receiver strategies.  Let m a n{ , , }  be a strategy profile and S  the set of all 

strategy profiles. Define ( )n n nd+= ⋅ ⋅ -( , ; ) ( , ) ( , )( , ) ( , ) 1R R Rx t xV U x t tt x tU  and 

( )n n nd= ⋅ + ⋅ -( , ; ) ( , )( , ) ( , ) 1 .( , )S S SV Ux t x t xt U tx t  Finally, let the Receiver have 

prior beliefs b =0( () )t f t  and posterior beliefs b( | )t m respectively. A pure 

strategy perfect Bayesian equilibrium (equilibrium henceforth) s  = m a b{ , , }  is 

characterized by the following four conditions: 

 

a nÎ ÎFor each , ( ) arg max )( ),( ;St T m tm t V   

(2) n ba ÎÎ Î òFor each , argmax( ) ( , ; ) ( | )a A
R

T
m V a t t m dtm M   

 n d n d= > = <( , ) 1 if ( , ) ( , ) and ( , ) 0 if ( , ) ( , )S S S Sa t U a t U t a t U a t U t  

 b m b0( ) is derived from  and using Bayes Rule whenever poss e iblm  

 

We say a type t induces action a, if the Receiver always takes action a after any 

message t sends in equilibrium. 

                                     
8 For ease of exposition, we define equilibrium for pure strategies. For our purposes this is not 

restrictive. The refinement we will use requires Receivers to play pure strategies. In addition, all 
equilibrium outcomes are partition equilibria outcomes that can be supported by a pure Sender 
strategy. 
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We consider the following type of equilibria. Following Matthews, we require 

the Receiver to play pure strategies and require Senders to always induce ac-

tions that are payoff-maximizing (in the spirit of Selten’s (1975) trembling hand 

perfection). From now on, we will use ‘equilibrium’ to refer to a perfect Bayesian 

equilibrium satisfying these two requirements. 9 As we show in De Groot Ruiz, 

Offerman & Onderstal (2012b), all equilibria in such veto threat games are 

partition equilibria. A partition equilibrium can be characterized by the finite 

set of actions 1 2, ,...,{ }nA a a a* =  the Receiver proposes in equilibrium, where 

1 2 ... .na a a< < <  The number of equilibrium actions n is called the size of the 

equilibrium. We say a type t induces an action ,a ¢  and write ¢=( ) ,a t a  if the 

Receiver proposes a¢  after any message m the Sender sends. Each type induces 

an action ia A*Î  which maximizes her payoff and accepts it if and only if 

( , ) 0.S
iU a t ³ 10 (In G(B) the payoff maximizing action is simply the action 

closest to her type.) This means that a partition of the type space 

0 1 10 1n nt t t t-= < < << =  exists such that each type in 1( , )i it t-  induces .ia  

It is straightforward to check that a set of actions 1 2 ... naa a< < <  character-

izes a partition equilibrium if and only if 

 

(3) 
t t

t t
-

Î ³
Î =ò

1

{ : ( , ) 0}
argmax ( ) ( )  for all 1,..., ,

i

S

i

t
R

i a A U a
t

a U a I d i n  where 

0 0, 1nt t= =  and 1( , ) ( , )  for all 1,..., 1.S S
i i i iU a t U a t i n+= = -  

 

The game has two equilibria: a pooling (size-1) equilibrium and a 

(semi)separating size-2 equilibrium. For both equilibria, the set of equilibrium 

actions the Receiver takes does not depend on :B  

 
                                     
9 There is an infinite number of equilibria that induce the same equilibrium outcome. These 

essentially equivalent equilibria just differ in the messages that are used. For simplicity, we refer 
to a class of equilibria inducing the same equilibrium outcome simply as ‘an equilibrium.’  

10 There will be a set of measure zero of types for which 1( , ) ( , )S S
i iU a t U a t+=  for some i. It 

does not matter which action they induce. 
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Proposition 1 G(B) has two equilibria: a pooling equilibrium Ps  1{ 45}a =

and a separating equilibrium Ss  1 2{ 0, 60}.a a= =  

 

In the pooling equilibrium, all types induce 45, whereas in the separating 

equilibrium all Sender types in the interval [0, 30) induce action 0a =  and all 

Sender types in the interval (30, ]B  induce action 60.a =  In the separating 

equilibrium, the Sender always accepts, and in the pooling equilibrium all 

Senders in [0, 105] accept.  

The intuition behind the proposition is the following. Since all equilibria are 

partition equilibria, the Receiver’s posterior beliefs consist of intervals. If the 

Receiver believes the Sender’s type is uniformly distributed on an interval [ , ]t t , 

he faces the following trade-off when looking for a best response. As the pro-

posed action increases (up to min{ 60, 60}t t+ - ), the probability of acceptance 

increases but the utility conditional on acceptance decreases. Senders best 

respond by inducing the action closest to their type. As in any cheap talk game, 

there is a pooling equilibrium in which all Senders employ the same message 

strategy and the Receiver ignores all messages. In G(B), also a size-2 equilibri-

um exists. Higher size equilibria do not exist, roughly because there is a mini-

mum distance between two positive equilibrium actions and a maximum to the 

value an equilibrium action can take. 

At this point two questions arise. First, is one equilibrium more plausible 

than the other? Second, does B influence the stability of the equilibria? Stand-

ard signaling refinements in the vein of Kohlberg and Mertens’ (1986) strategic 

stability have no bite in cheap talk games since messages are costless. For a 

similar reason, the (Agent) Quantal Response Equilibrium (McKelvey & Palfrey, 

1998), which can often select equilibria in signaling games, is not predictive in 

cheap talk games.11 To address the selection problem for costless communica-

tion, Farrell (1993) considered credible deviations from equilibrium. He argued 

                                     
11 The Agent Quantal Response Equilibrium (A-QRE) is the extensive form game variant of 

the Quantal Response Equilibrium. The pooling equilibrium of a Cheap Talk game is always a 
limiting principal branch A-QRE. We come back to A-QRE in section 5.3. 
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that, in contrast to the standard assumption in game theory, communication 

proceeds through a pre-existing natural language. Hence, people can use ‘neolo-

gisms,’ out-of-equilibrium messages with a literal meaning that will be under-

stood (although not necessarily believed). Farrell considers neologisms which 

literally say: “propose action a , because my type is in set .N ” Farrell deems a 

neologism credible if and only if (i) all types t  in N  prefer a  to their equilibri-

um action a(t), (ii) all types t  not in N  prefer their equilibrium action a(t) to 

a  and (iii) the best response of the Receiver after restricting the support of his 

prior to N  is to play a .12 We will denote credible neologisms by ,a N . An 

equilibrium is neologism proof if it does not admit any credible neologism. 

Farrell argues that only neologism proof equilibria are stable, since rational 

players would move away from equilibria which admit credible neologisms.  

Matthews, Okuno-Fujiwara & Postlewaite (1991) consider more elaborate 

messages, called announcements, and propose three types of credible deviations. 

Weakly credible announcements are similar to neologisms, but allow deviating 

types to distinguish amongst themselves. A weakly credible announcement that 

should be believed if the Receiver realizes that types can send multiple an-

nouncements is a credible announcement. A credible announcement that sur-

vives a rigorous Stiglitz-critique is strongly credible. Equilibria that admit no 

(weakly/strongly) credible announcements are called (strongly/weakly) an-

nouncement proof. In G(B), strong announcement proofness, announcement 

proofness and neologism proofness coincide.13,14 Consequently, for ease of exposi-

tion we can limit our discussion of credible deviations to credible neologisms.15 

In G(B) two types of credible neologisms can exist. A ‘low’ neologism which 

roughly says “I am a low type and prefer 0 to the lowest equilibrium action and 

                                     
12 Farrell does not consider cheap talk games with veto threats. In line with the trembling 

hand refinement, we assume that types induce a neologism if ( , ) ( ( ), ).S SU a t U a t t>  
13 The reasons are that all weakly credible announcements are equivalent to a credible neolo-

gism (for similar arguments that there is at most a size-2 equilibrium) and that all types can 
send at most one credible neologism.  

14 All equilibria in G(B) are weakly announcement proof, as in almost all cheap talk games. 
15 Myerson (1989) introduces credible negotiation statements, which are similar to credible 

neologisms. Myerson is able to obtain a solution concept that guarantees existence but at the 
cost of assuming the presence of a mediator. 
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so do you, so play 0” and a ‘high’ neologism which roughly says “I am a high 

type, and it is probable that I will not accept the highest equilibrium action, so 

it is better for both of us if you propose something higher.” As the following 

proposition shows, the pooling equilibrium is never neologism proof and the 

separating equilibrium is only neologism proof if B = 120.  

 

Proposition 2 The pooling equilibrium admits the credible neologisms 

0,[0,22.5]  and 
15

min{ 60,75},[min{ ,60}, ] .
2

B
B B

-
á - ñ  The separating equilibrium 

is neologism proof if 120.B =  For 120,B >  the separating equilibrium admits the 

credible neologism min{ 60,80},[min{ ,70}, ]
2
B

B Bá - ñ . 

 

So, for 120B >  neologism proofness (and announcement proofness) are silent 

about the stability of the separating equilibrium relative to the pooling equilib-

rium. In addition, they are silent about whether the separating equilibrium is 

more stable if 121B =  than, say, if 210B = . In De Groot Ruiz, Offerman & 

Onderstal (2012a) we show that the same holds for other cheap talk refinements 

including communication proofness (Blume & Sobel, 1995) and the recurrent 

mop (Rabin & Sobel, 1996), as well as the non-equilibrium concepts of Credible 

Message Rationalizability (Rabin, 1990) and PCI (Blume, Kim & Sobel, 1993).  

The NITS (Chen, Kartik & Sobel, 2008) criterion, which successfully predicts 

in the Crawford-Sobel (1982) game, is partially predictive in G(B). NITS starts 

by specifying a ‘lowest type,’ a type with the property that all other types prefer 

to be revealed as themselves rather than as that lowest type. An equilibrium 

survives NITS if the lowest type has no incentive to separate, i.e. if the lowest 

type prefers her equilibrium outcome to the outcome she would get if she could 

reveal her type. In our game, such a ‘lowest type’ cannot easily be formulated. If 

we take 0t =  as the lowest type, for each B  only the separating equilibrium is 
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NITS in our game.16 Hence, NITS would predict that the separating equilibrium 

is always stable regardless of .B  (In section 6.2, we introduce a game that has 

multiple equilibria that survive NITS.) 

Finally, some may argue that the most influential equilibrium (i.e. the equi-

librium which induces the largest number of actions) is the most plausible 

equilibrium, aside of any stability considerations. In our game, this criterion also 

selects the separating equilibrium regardless of .B  

In sum, existing criteria provide no or a partial answer to the question how 

stable equilibria in G(B) are for 120B > . 

2.2. ACDC in G(B) 

In our view, the idea of credible deviations is sound, but a rationalistic binary 

division between stable and unstable equilibria is inadequate to fully capture the 

intricate patterns of human behavior. Our conjecture is that two aspects will 

affect the behavioral stability of an equilibrium. The first concerns the mass of 

types that can credibly induce a deviation. The smaller this mass becomes, the 

less unstable an equilibrium will be, as it will be disturbed less frequently. The 

second aspect concerns how much the deviation profile differs from the equilib-

rium profile in terms of Sender payoffs. The smaller this difference becomes, the 

smaller both the Sender’s incentive to deviate and the perturbation to the 

equilibrium if she deviates will be. 

For instance, the separating equilibrium is not neologism proof if B = 121. 

However, we do not expect behavior in the game G(121) to be very different to 

behavior in G(120). After all, the induced deviations from equilibrium are very 

small: types in [60.5,121]  induce 61  instead of 60. Hence, Senders can at most 

earn 1  by deviating and, if they deviate, the resulting profile is very similar to 

the equilibrium profile. In contrast, in the pooling equilibrium the neologism 

                                     
16 All types in [0,60]  are lowest types according to Chen et al.’s definition. The pooling equi-

librium survives NITS relative to types in [ ]22.5,105 ,  whereas the separating equilibrium 

survives NITS relative to types in [0,30].  
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deviations are substantial: types from 0 to 22.5 deviate from 45 to 0, and types 

from 53 to 121 deviate from 45 to 61. As a consequence, Senders have a large 

incentive to deviate to a profile which is very different from the equilibrium 

profile. Furthermore, the separating equilibrium seems more stable if 121B =  

than if, say, 210B = , when types in [70,210] can credibly induce 80 rather than 

60.  

In De Groot Ruiz, Offerman & Onderstal (2012a), we formalize these ideas in 

the concept of the Average Credible Deviation (ACD).17 The ACD intends to 

capture the frequency and intensity of deviations. We need a couple of defini-

tions. Let ( )a ts  be the equilibrium action induced by type t  in equilibrium ;s  

and let ( )a ts  be the deviating action type t  induces if she plays a credible 

neologism.18 Let ( )a ts  ( )a ts=  if Sender type t  cannot play a credible neolo-

gism. Finally, we define ( )SU t  and ( )SU t  as the lowest and highest payoff a 

Sender can get if both players play a rationalizable strategy. Now, for each 

Sender type t , we specify the size of the credible deviation from equilibrium, 

( , )CD t s . The ACD is the expected value of the credible deviations. We measure 

the size of a credible deviation by the Sender’s incentive to deviate relative to 

the largest (rationalizable) incentive possible, so that it lies on a scale between 

0 and 1 . The higher this incentive is, the higher the probability that a Sender 

will deviate and the larger the upheaval such a deviation can cause to an equi-

librium. In particular, we define the credible deviation for type t  as 

 

(4)  
( , ( )) ( , ( ))

( , )  
( ) ( )

S S

S S

U t a t U t a t
CD t

U t U t

s s

s
-

º
-

 

 

                                     
17 There we also provided a more general and rigorous treatment of the concept. Here we 

restrict ourselves to the definitions needed in the current setting. 
18 In G(B), ACDC gives equivalent results if we use weakly or ordinary credible announce-

ments are used instead of credible neologisms, as is the case in many games. For cases where the 
theories differ, we prefer (ordinary) credible announcements for discrete games and credible 
neologisms for continuous games. 
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whenever ( , ( )) ( ).S SU t a t U ts >  If ( , ( )) ( ),S SU t a t U ts = the Sender has no incentive 

to adhere to her equilibrium strategy, as she can do no worse by deviating, and 

we set ( , ) 1.CD t s º The ACD of equilibrium s  is now defined as  

 

(5)  [ ]( ) ( , )tACD E CD ts s=  

 

Observe that ( ) [0,1].ACD s Î  Using ACD, we can formulate the ACD-Criterion 

(ACDC). ACDC predicts that an equilibrium s  is more stable than an equilib-

rium s¢  if ( ) ( ).ACD ACDs s¢<  Hence, ACDC allows us to select equilibria. In 

particular, we call an equilibrium an ACDC equilibrium if there is no other 

equilibrium in the game with a lower ACD. We consider an ACDC equilibrium 

as the most plausible equilibrium, i.e. that which will predict best on average, 

rather than the equilibrium that will always be played all of the time. ACDC 

can select equilibria when neologism proofness is silent and reduces to the latter 

if neologism proof equilibria exist. 

The following proposition gives the results of ACDC for G(B). 

 

Proposition 3 The separating equilibrium Ss  is the unique ACDC equilibri-

um. Furthermore, the ACD of the separating equilibrium is 0 for 120B =  (in 

which case the equilibrium is neologism proof) and strictly increasing in B.   

 

We can now see why G(B) provides a good testing ground for our ideas. It 

contains the features that make (continuous) cheap talk games difficult to refine. 

In contrast to Crawford & Sobel’s (1982) and Matthews’ (1989) cheap talk 

models, however, in our game a parameter value exists such that there are 

multiple equilibria, of which only one is neologism proof. Hence, our model 

allows us to test the relevance of credible deviations in a continuous setting. 

Furthermore, it allows us to test the idea that stability is not all-or-nothing. 

First, we can compare within a game two equilibria that are not neologism 
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proof. Second, across games we can gradually increase the number of types that 

can credibly deviate in an equilibrium by increasing B.  

3. Experimental Design and Procedures 

We ran five treatments. In three treatments, we ran G(B) with an increasing 

boundary: G(120), G(130) and G(210). In addition we ran two additional 

robustness treatments T4 and T5 to which we return in section 6. Table 1 

summarizes the theoretical properties of the experimental treatments. For each 

treatment, we have six matching groups, each consisting of 10 subjects (5 

Senders and 5 Receivers). 

 

 TABLE 1
SUMMARY OF EXPERIMENTAL DESIGN

Treatment ( )RU d  ( )SU d  B Equilibria1 ACD2

G(120) 0 0 120 {45}, {0, 60}** 0 
G(130) 0 0 130 {45}, {0, 60}* 0.22 
G(210) 0 0 210 {45}, {0, 60}* 0.50 

T4 30 30 120 {45/2},{0, 30}* 0.56 
T5 0 30 120 {30}, 1 1{ , 60},a a +  

2 2{0, , 60}a a + ** 3,4 

0 

Notes: In each game, t was uniformly distributed on the integers in [0,B]. 2
3( ) 60RU x x= -

and ( , ) 60SU x t t x= - - . 1An equilibrium has a *  if it is ACDC and ** if it is neologism proof 

as well. 2The ACD of the ACDC equilibrium. 3
1 [0,30]a Î  and 2 (0,30].a Î 4 Only {0,30,60} is 

ACDC.   
 

We used a standard procedure to recruit subjects from the student popula-

tion of the University of Amsterdam. The computerized experiment was run at 

the CREED lab. The software was written with z-Tree (Fischbacher, 2007). 

At the start of the experiment, subjects were randomly assigned to the role of 

Sender (‘chooser’ in the terminology of the experiment) or Receiver (‘proposer’). 

Subjects kept the same role throughout the whole experiment. Subjects read the 

role-specific instructions on paper at their own pace. (See Appendix C for the 

instructions.) After reading the instructions, subjects had to answer several 
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questions testing their understanding of the instructions. Only when all subjects 

had answered all questions correctly, the experiment started. 

Subjects received a starting capital of 100 points. In addition, subjects earned 

points with their decisions in each of the 50 periods. (Subjects were informed 

that the experiment would last for approximately 50 periods.) At the end of the 

experiment, total point earnings were exchanged to euros at a rate of 1.5 euros 

for 100 points. In a session, we ran 2 matching groups simultaneously, each 

consisting of 5 Senders and 5 Receivers. In every period, each Sender was ran-

domly rematched with a Receiver in the own matching group. In total, 300 

subjects participated, who on average earned 28.30 euros in approximately 2 

hours, with a minimum of 10.10 euros and a maximum of 40.47 euros. Each 

subject only participated once.  

The procedure within a period was as follows. In each period, the Sender was 

informed of her own type. All subjects knew that each individual Sender’s type 

in each period was an independent draw from the uniform distribution on [0, ].B

19 After having been informed of the own type, each Sender sent a message 

(‘suggestion’ in the terminology of the experiment) to the Receiver. The Receiv-

er was informed of the message but not of the Sender’s type. Then the Receiver 

chose an action (‘made a proposal’) that was either accepted or rejected by the 

Sender. Types, messages and actions were confined to integers in [0, ].B 20 

Payoffs were then calculated according to the payoffs in Table 1. At the end 

of the period, Senders and Receivers were informed of the state of the world 

(the Sender type) and all the decisions made by the pair they were part of. In 

addition, each subject was shown her own payoff and how it was calculated. At 

any moment, subjects were provided with information about the social history 

                                     
19 To maximize the comparability of the treatments, we drew three sets of types for one 

treatment and then rescaled these sets for each of the other treatments.  
20 We chose for this restricted message space instead of a free chat in order to be able to 

provide a history screen, facilitate learning and have data that can be interpreted clearly. Notice 
that the message space is rich enough for the communication of all credible neologisms in both 
equilibria, as in our game a neologism action uniquely identifies a credible neologism. 
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in order to facilitate learning.21 At the bottom of the screen they saw how play 

had unfolded in the 15 most recent periods in their own matching group. For 

Senders the information was organized as follows. The left-hand side showed a 

table summarizing the choices of the pairs in the own matching group. Each row 

contained a pair’s suggestion (message), proposal, acceptance and preferred 

outcome (type of the Sender). The table was first sorted on suggestion, then on 

proposal, acceptance and finally on preferred outcome. The right-hand side 

showed the corresponding graph that listed the proposals as function of the 

suggestions. Figure 1 shows an example of the information that Senders re-

ceived.  

 

 

For Receivers the information was communicated in a slightly different way. 

In their table, each row listed a pair’s suggestion, preferred outcome, proposal 

and acceptance. The table was first sorted on message, then on preferred out-

come, proposal and finally on acceptance. In their graph, preferred outcomes 

were shown as function of the suggestions.  

                                     
21 Miller & Plott (1985) showed how a social history can help subjects understand the strate-

gic nature of signaling games. 

Figure 1 
Example of social history screen History Screen (Senders) 
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4. Experimental Results: Equilibrium Performance 

In this section, we discuss our experimental results in the light of equilibrium 

selection and performance. Since there are an infinite number of strategy profiles 

supporting the same outcome, we focus in our analysis mainly on the outcome, 

i.e. the mapping of types to actions and acceptance decisions. After describing 

the data, we provide statistics on acceptance rates, which shows that Senders 

accept proposals with a positive payoff according to equilibrium in the vast 

majority (96%) of cases. Next, we deal with identifying which equilibrium is 

selected and how well each equilibrium performs. For this, we look at two 

performance measures: the percentage of outcomes an equilibrium predicts 

correctly (within some bandwidth) and the average prediction error in terms of 

the distance between predicted and actual proposals. On the basis of this we get 

a continuous rather than binary measure of equilibrium performance, in line 

with the methodological stance of ACDC that behavior is not fully in or out of 

equilibrium. On the basis of this performance measure, we can select which 

equilibrium performs best in relative terms. 

 As we are interested on equilibrium selection here, we focus exclusively on 

the final 15 periods of the experiment. In section 5, we will take a closer look at 

the dynamics in the data and also use the data from early periods. All statistical 

tests have been done treating each matching group as one independent data 

point. For comparisons within a treatment we use Wilcoxon signed rank tests, 

and for comparisons between treatments we use Mann-Whitney ranksum tests. 

*, **, *** indicate significance at the 10%, 5% and 1% level respectively (for 

two-tailed tests).  

We start with some descriptive statistics of the final 15 periods of the exper-

iment.  
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Figure 2 plots the Receivers’ actions as a function of the Senders’ types for 

each of the three treatments together with the equilibrium predictions. Con-

sistent with the separating equilibrium we find that Senders with low types tend 

to elicit an action of 0, while the Senders with high types tend to trigger a high 

action. Types close to the equilibrium indifferent type of 30 show a more contin-

uous separation than the equilibrium step-function. ‘High actions’ are close to 

equilibrium for B=120 and, to a slightly lesser degree, for B=130. We define the 

high action as the action high types (t > 30, the equilibrium threshold) induce, 

conditional on being higher than the pooling action 45. In the G(120) treatment, 

where the separating equilibrium is neologism proof, the distribution of the high 

actions is similar and centered around 60. (The high actions are not significantly 

different from 60.) This is in agreement with the equilibrium prediction. We see 

a similar pattern in G(130), although the mean high action is now somewhat 

higher than the equilibrium action, as expected if high types send a neologism. 

In G(210), the elicited actions by high types are far off from equilibrium and 

much more dispersed. (In both G(130) and G(210), the high action is signifi-

cantly larger than 60.)  

The equilibrium analysis assumes that Senders do not leave money on the 

table, i.e., they are supposed to accept any action that gives them positive 

payoff. Overall, Senders accepted proposed actions that would give them a 

positive payoff in 96% of the cases. Table 2 presents the actual acceptance 

Figure 2 
This figure shows what types (x-axis) induced what action (y-axis) for the last 15 periods. 

Bubbles are clustered on a 10-grid. Each bubble represents all observations in a 
( 5, 5] ( 5, 5]t t a a- + ´ - +  neighborhood. The size of each bubble is proportional to the number 
of observations it represents. 
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frequencies as function of the Sender’s payoff (in the rows) and the Sender’s 

share in the total payoff (in the columns). It is remarkable that Senders almost 

always accept ‘decent’ proposals that give them at least 10, independent of their 

share in the total payoff. The share in total payoff only matters when Senders 

receive ‘peanuts’ proposals with payoffs below 10. As a result, the equilibrium 

assumption about Senders’ acceptance behavior is by and large supported in the 

data. Notice that the picture about acceptance rates differs from results in 

standard ultimatum games, where subjects tend to reject proposed actions more 

often (Oosterbeek, Sloof & Van der Kuilen, 2004). A crucial difference between 

our bargaining game and the ultimatum game is that in our game the Receiver 

is not informed of the type of the Sender. Therefore, unlike in the ultimatum 

game, it is unclear whether an unfavorable proposal is made intentionally. 

 

TABLE 2 
ACCEPTANCE RATES 

  Share Sender 
Payoff   

Sender Total 0-10% 10-20% 20-30% 30-40% 40-50% >50% 

<0 0% 211 -  - - - -  - 
=0 50%    6 50%   6 -  - - -  - 
0-10 70% 112 40% 30 73% 49 90% 29 100%   2 100%   1 100%    1 
10-20 92% 122 -  100%  2 87% 69 97% 36 100%   8 100%    7 
20-30 99% 135 -  -  100% 13 100% 48 98% 59 100%   15 
30-40 100% 182 -  -  -  100% 28 100% 76 100%   78 
40-50 100% 250 -  -  -  -  100% 89 99% 161 
50-60 100% 332 -  -  - - 100% 76 100% 256 

Total when 
payoff>0 40% 36 75% 51 89% 111 99% 114 100% 309 100% 518 

Notes: the cells show the acceptance rates (in percentages) as a function of the surplus pay-
off the Sender would receive if she would accept the proposed action (in the rows) and her 
share of the surplus (in the columns, cases where the surplus was not positive were dropped). 
The number of observations pertaining to the cell is listed in italics. The Sender’s share is 

defined as 
+

´ ( , )

( , ) ( )
100% .

S

S R

U a t

U a t U a
 

 

 Table 3 reports how often actual play was close to equilibrium. We say that 

an outcome is consistent with equilibrium (‘correctly predicted’) if the actual 

action lies within a bandwidth of 10 and if the acceptance decision was correctly 

predicted. The absolute numbers in the table are obviously dependent on the 

chosen bandwidth. Here, we are interested in the relative magnitudes of the 
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numbers, for which the exact level of the bandwidth turns out not to matter. In 

addition, we also look at the average (absolute) prediction error of the equilib-

ria, reported in Figure 3. Let ( )a ts  be the equilibrium action of the Receiver 

given type t  and  the observed action for observation i. The average 

prediction error (for a set of n observations I) is then 1 ˆ| ( ) ( ) |i i i
i I

a t a t
n

s

Î

-å . The 

percentage of outcomes that are correctly predicted is an intuitive measure of 

predictive success, whereas the average prediction error a parameter-free and 

precise measure. The results are qualitatively identical (and equally significant) 

for both measures of predictive success. 

 

TABLE 3
FRACTION OF OUTCOMES CORRECTLY PREDICTED BY EQUILIBRIA 

 All observations Observations with t < 120 
Treatment Equilibria Dif Equilibria Dif

Pooling Separating Pooling Separating  
G(120) .39 .69 .30** .39 .69 .30**
G(130) .13 .57 .43** .14 .59 .45**
G(210) .09 .18 .09** .09 .28 .19**

Dif 120-130 .25** .12 .25** .09  
Dif 120-210 .30*** .51*** .29** .40***  
Dif 130-210 .05** .39*** .05 .31***  

Notes: The table shows per treatment the median (over matching groups) of the fraction of 
correctly predicted outcomes by the equilibrium. We classified a prediction as correct if both (i) 
the distance between the predicted and observed action was not larger than 10 and (ii) the 
acceptance decision was correctly predicted. We used the data of the last 15 periods. ‘Dif’ 
denotes ‘difference.’ 

 

We first deal with the question whether credible deviations (and hence neolo-

gism proofness and announcement proofness) have a bite. For this question, two 

comparisons are relevant. First, within treatment G(120) the separating equilib-

rium is neologism proof while the pooling equilibrium is not. In accordance with 

neologism proofness, more outcomes are consistent with the separating equilib-

rium than with the pooling equilibrium. The difference is both substantial and 

statistically significant. Second, when we move from treatment G(120) to 

G(210), the separating equilibrium ceases to be neologism proof. While the 

ˆ ( )i ia t
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separating equilibrium does a good job in G(120), it organizes only a bleak 

minority of the data in G(210). This conclusion is valid when we take the data 

for all types as well as when we condition on the outcomes with types less than 

120. So also when we compare the behavioral stability of the same equilibrium 

across treatments, we find support for neologism proofness. 

To investigate whether credible deviations matter gradually across games in 

the manner ACDC predicts, we compare G(120), G(130) and G(210). In G(130), 

the separating equilibrium is no longer neologism proof but the ACD measure 

remains rather small relative to G(210). So if ACDC makes sense, the results of 

G(130) should be closer to G(120) than to G(210). Table 3 confirms that this is 

indeed the case. Like in G(120), the separating equilibrium is much more suc-

cessful than the pooling equilibrium. The separating equilibrium predicts behav-

ior a bit less in G(130) than in G(120), but the difference is not significant.22 In 

contrast, the difference between G(130) and G(210) is much larger. In G(210), 

significantly fewer cases are consistent with the separating equilibrium than in 

G(130). So even though the separating equilibrium is not neologism proof in 

either treatment, it traces the data much better in G(130) than in G(210), as 

predicted by ACDC. Observe that in G(210), ACDC does not only predict that 

behavior is closer to the separating equilibrium than to the pooling equilibrium, 

but also that it will be rather unstable due to its high ACD. 

Regarding equilibrium selection, observe that in all treatments the ACDC 

(separating) equilibrium predicts significantly better than the non-ACDC 

(pooling) equilibrium. This is also the case for G(130) and G(210), where 

neither equilibrium is neologism proof. Still, in G(210), the difference between 

the separating and the pooling equilibrium is much smaller than in the other 

treatments, in line with ACDC. 

The power of ACDC is further illustrated in Figure 3. This figure lists the 

average prediction error of a particular equilibrium and treatment as a function 

of its ACD. In agreement with ACDC, the higher the ACD measure, the larger 

                                     
22 Since this result also holds when the analysis is restricted to observations with 120,t £  

this is not a measurement artifact due to a change in the interval of measurement. 
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the average prediction error tends to be. Notice in particular that the average 

prediction error of the separating equilibrium only rises slightly when it just 

ceases to be neologism proof (relative to the differences with G(210)). 

 

 

5. Dynamics 

In this section, we look at the dynamics. In subsection 5.1, we describe the 

most important dynamic features of the data. In 5.2, we observe that an elemen-

tary best response model is not predictive. In 5.3, we introduce the neologism 

dynamic, which is able to explain important parts of the data. 

5.1. Dynamics in Experiment  

In this section we deal with the question how subjects adapted their behavior 

during the experiment. Figure 4 plots messages conditional on Sender type (left-

 
Figure 3 

The figure plots for each equilibrium in each treatment its theoretical ACD against its empir-
ical prediction error. We report the median (over matching groups) of the average prediction 
error. We used the data of the last 15 periods. 
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hand side), actions conditional on message received (middle) and actions condi-

tional on Sender type (right-hand side). We present plots for the first 15 and 

last 15 periods in each treatment. The type-message plots show that Senders’ 

messages are higher than their types and that Senders learn gradually to exag-

gerate more. In the last 15 periods of each treatment, Senders overstate the true 

state more than in the first 15 periods. Thus, there is ‘language inflation.’ 

Receivers’ action-message plots provide the mirror image of Senders’ type-

message plots. That is, in the first part of the experiment Receivers tend to 

propose actions slightly below the messages received. In the final part of the 

experiment, Receivers have learned to subtract larger amounts from the messag-

es received. The type-action plots on the right hand side illustrate how close the 

actually triggered actions are to the equilibrium predictions. For treatments 

G(130) and G(120), the data are closer to the separating equilibrium in the final 

part of the experiment than in the first part of the experiment. A similar trend 

is not observed in G(210). To the contrary, in this treatment the data remain far 

from equilibrium throughout the whole experiment. 

We now turn to the questions how easily subjects reached the separating 

equilibrium in the different treatments and how likely it was that they stayed 

there. Table 4 presents the relevant statistics separately for the first part (first 

15 periods) and the final part (last 15 periods) of the experiment. In the first 

part of the experiment, subjects more easily reached the separating equilibrium 

from a state of disequilibrium in treatments G(120) and G(130) than in G(210). 

When subjects were approximately playing according to the separating equilib-

rium in the previous period, they were much more likely to stay there in treat-

ments G(120) and G(130) than in treatment G(210). The lower part of the table 

shows that the differences between treatment G(210) and the other treatments 

became even more pronounced in the final part of the experiment. In particular, 

in G(120) and G(130) the separating equilibrium attracts more outcomes in the 

final part than in the first part (and in G(120) significantly so). In contrast, in 

G(210) the separating equilibrium attracts less outcomes in the final part; in 

fact, it hardly attracts any outcomes in the final part. 
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Figure 4 
This figure compares the chosen strategies (type-message, message-action) and the resulting 

profile for the first 15 and last 15 rounds. The bubble plots are clustered on a grid of 10. In the 
last column, the solid line represents the separating equilibrium and the dotted line the pooling 
equilibrium. 

G(120) 

G(130) 

G(210) 
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 TABLE 4
FRACTION OF MATCHING GROUP OBSERVATIONS IN SEPARATING EQUILIBRIUM 

CONDITIONAL ON PREVIOUS STATE 
 Treatment Previous state 

no equilibrium 
Previous state  
equilibrium 

First Part 
(Periods 1-15) 

G(120) .46 .60 
G(130) .41 .51 
G(210) .10 .09 

Dif 120-130 .05 .09 
Dif 120-210 .36*** .51*** 
Dif 130-210 .31*** .42*** 

Final Part 
(Periods 36-50) 

G(120) .64 .74 
G(130) .50 .72 
G(210) .03 .00 

Dif 120-130 .14 .02 
Dif 120-210 .60*** .74*** 
Dif 130-210 .46*** .72** 

Difference between 
First and Final Part 

G(120) .18** .14* 
G(130) .09 .21 
G(210) .07 -.09 

Notes: A matching group observation in a given period is classified as consistent with the 
separating equilibrium prediction if and only if the acceptance decision was predicted correctly 
and equilibrium action – observed action  ≤ 10 for at least 3 of the 5 pairs in the matching 
group; the middle column displays the fraction of equilibrium observations given that the 
previous observation was not in equilibrium; the right column displays the fraction of equilibri-
um observations given that the previous observation was in equilibrium. 
 

Summarizing, the two main features of the dynamics in the data are (i) there 

is language-inflation and (ii) the separating equilibrium attracts behavior over 

time in G(120) and to a slightly lesser extent in G(130), but not at all in 

G(210).  

5.2. Best Response Dynamic 

A first avenue to look to explain the data is a simple best response model. 

This, however, cannot distinguish between the two equilibria or the effects of B 

using natural initial conditions. (We get equivalent results for a level-k analysis.) 

To see why, consider the simplest best response dynamic, in which Sender and 

| |
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Receiver best respond to the other’s strategy in the previous period. We again 

assume that Senders induce the action they prefer most. If Senders are indiffer-

ent, they randomize between their optimal actions. The outcome of the best 

response model depends very much on the initial conditions and we will look at 

the two natural starting points: a babbling strategy and a naive strategy. In the 

babbling strategy no information is transmitted: Senders randomize in the 

interval [0,B] and Receivers take the optimal prior action 45 regardless of the 

message (this corresponds to a random level-0 in a level-k analysis). In the naive 

strategy all information is transmitted: Senders report their type and this is 

believed by Receivers (this corresponds to a truthful level-0 in a level-k analy-

sis). It is readily verified that if players babble in the first period, then the 

dynamic forever stays in this pooling equilibrium, regardless of the boundary. 

Similarly, if players use a naive strategy in the first periods, it can be shown 

that the dynamic converges to the separating equilibrium, regardless of the 

boundary.  

5.3. Neologism Dynamic 

We introduce a small twist to create a ‘neologism dynamic’: Sender types who 

can send a credible neologism with respect to the Receiver’s strategy in the 

previous round will do so and such a credible neologism will be believed. In all 

other respects, the dynamic is the same as above. If we analyze this dynamic for 

our experimental treatments (G(120), G(130), G(210)), we get entirely different 

results. First, the outcome becomes less dependent on the initial conditions. 

Second, the dynamic converges to behavior that resembles the separating equi-

librium when the ACD is small and only when it is small. 23 Finally, in the 

attractor of G(130) and G(210), types close 30 do not separate neatly as they 

would in the separating equilibrium. (A level-  with neologisms analysis yields 

qualitatively the same result as the best response dynamic.)  

                                     
23 Although (in line with ACDC) the dynamic converges in all cases to behavior that is closer 

to the separating than to the pooling equilibrium. 

k
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In G(120), the dynamic converges to a steady state that corresponds to the 

separating equilibrium for both random and naive first-period strategies. If 

players have a naive strategy in period 1, then Senders realize in period 2 that 

they should send their type plus 60, leading to an inflation of language. Types 

higher than 60 pool at the highest message of 120. In period 3, Receivers recog-

nize the language inflation and propose 0 to any message smaller than 120. In 

addition, they propose 60 if they receive 120. In period 4, the players are al-

ready in the separating equilibrium. Note that as long as the Receiver proposes 

 and an action higher or equal to 60, no neologism can be played. Suppose 

players start with a babbling strategy. Then in period 2, Senders in  

send a low neologism of  and Senders in  send a high neologism of 

60. In period 3, the Receiver realizes that types who do not send a neologism 

accept , and propose  to them and 60 to others. As a result, in period 4 

equilibrium is reached. 

In G(130), the dynamic starts out (for both initial conditions) similar to 

G(120) but does not converge to the separating equilibrium. Instead, the dy-

namic converges to a four-cycle that, nonetheless, stays pretty close to the 

separating equilibrium. In G(210), the dynamic converges to a (non-steady) 

state, where the Receiver proposes actions 0, 30 and 90, and the Senders in 

 send a neologism of 90. Hence, the dynamic does not come close to the 

separating equilibrium. (Although it comes closer to the separating than to the 

pooling equilibrium.) We summarize the findings in Figure 5. We have held the 

discussion of the neologism dynamic informal here. For details and proofs, we 

refer to Appendix B. The calculations are straightforward, but tedious. 

Observe that the results of the neologism dynamic are in line with the two 

main dynamic features of the experiment: (i) there is language-inflation and (ii) 

the separating equilibrium attracts behavior in G(120) and to a slightly lesser 

extent in G(130), but not at all in G(210). (See Figure 4.) Furthermore, the 

observation that the prediction error of the separating equilibrium decreases 

over time in G(120) and G(130), but not in G(210) is in line with the neologism 

dynamic. Finally, note that in G(130) and G(210) types close to 30 (the indiffer-

0

[0,22.5)

0 (57.5,120]

0 0

(90,210]



27 
 

ence type in the separating equilibrium) do not separate neatly into low and 

high types. Hence, the dynamic predicts a messy separation close to the equilib-

rium indifference type for these treatments, which we observe in the data. In 

addition, it supports the assumption of ACDC that in an equilibrium with a 

small ACD, behavior will not be entirely in equilibrium but can be close to it 

(and that it can deviate substantially from equilibrium if the ACD is large). 

Our neologism dynamic is a parsimonious behavioral model that organizes 

the main patterns in the data even though it ignores some features that may 

also play a role. Firstly, it abstracts away from noise, which is present in the 

data (as is the case in most experiments). Hence, adding noise to our analysis, 

in the spirit of Quantal Response (McKelvey & Palfrey, 1995; 1998) would 

certainly make it more realistic. Nonetheless, in this case formalizing noise 

would not teach us much more about the data except that agents best respond 

in a noisy manner. In particular, an Agent Quantal Response (A-QRE) analysis 

per se cannot (meaningfully) select equilibria in cheap talk games: The pooling 

equilibrium is always a limiting principal branch A-QRE, while it is often 

implausible.24 Secondly, there is somewhat more separation close to the indiffer-

ence type than predicted by the separating equilibrium. Although this is pre-

dicted by the neologism dynamic predicts when that equilibrium is not neolo-

gism proof, other forces may also be in play here. In particular, one could think 

in the direction of lying aversion or some naivety on the part of the Receivers, 

such as in the model of Kartik, Ottaviani & Squintani (2007).25 

                                     
24 The A-QRE is the extensive form game variant of the QRE. The pooling equilibrium of a 

cheap talk game is always a limiting, principal branch A-QRE: for any rationality parameter , 
there is an A-QRE where all Senders mix uniformly over the message space and the Receiver 
ignores all messages. As l  increases, the Senders strategy remains unchanged, and the Receiv-
er’s best response smoothly approaches its actual best response to her prior.  

25 In De Groot Ruiz, Offerman and Onderstal (2011), we also studies the degree of infor-
mation transmission in treatments G(120), T4 and T5. The information contained in messages is 
very close to that predicted by equilibrium, although actual information transmission is a bit 
lower, since Receivers do not manage to decode all information. Our results are thus closer to 
those of Agranov & Schotter (2012). who observe the ‘right’ amount of information transmission 
in a coordination game, than to those of Cai & Wang (2006) who observe overcommunication in 
a Crawford-Sobel setting. 

l
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FIGURE 5 

6. Robustness 

We ran two additional treatments, T4 and T5, to perform two types of ro-

bustness checks. In T4 (and T5), we check that the treatment effects are not 

due to the increase in the action and type space. In T5, we test ACDC in a 

more complex setting and compare it with NITS and influentiality. As in section 

4, we focus on the last 15 periods and we also use the same statistical methods 

and notation as in that section. 

6.1. T4 

One possible experimental risk of manipulating B in treatments G(120), 

G(130) and G(210) is that our results could be influenced (merely) by increasing 

the action and type space. In particular, one may be worried that confused 

subjects simply choose something close to the midpoint of the message or action 

space. Therefore, we ran T4, which is strategically equivalent to the game 

G(240), but where we do not shift the boundary (we keep it at 120), but change 

the disagreement point payoff instead. T4 is identical to G(120), except that 

disagreement payoff for both players is 30: ( ) ( ) 30.R SU Ud d= =  We have: 

 

The figure shows the type-action plots the attractors of the neologism dynamics for bounda-
ries G(120), G(130) and G(210).  In G(120), the attractor is a steady state profile equal to the 
separating equilibrium. In G(130), the attractor is a four-cycle characterized by Receiver 
actions {0, };{0, ,70}; {0, ,70} and {0, , }. In G(210) the attractor is the  

strategy profile {0,30,90} (which is attracting but not a steady state). 

2
764 2

764 1
77 1

77 2
764



29 
 

Proposition 4 T4 has a size-1 equilibrium { }45
1 2a =  and a size-2 equilibrium 

{ }1 20, 30 .a a= =  In addition, T4 is strategically equivalent to G(240). 

 

Figure 6 shows a type-action bubble plot of T4 (left panel) and Table 5 shows 

the ACDC properties of T4 together with those of G(120), G(130) and G(210). 

The results of T4 are in line with those of the three G(B) treatments. In partic-

ular, the data of T4 are close to G(210), except that outcomes in T4 are even 

more dispersed, which is in line with the higher ACD of the separating equilib-

rium. 

 

FIGURE 6 
This figure shows the type action bubble plot for G(210) and T4. The bubble plots are 

clustered on a grid of 10. The solid line represents the ACDC equilibrium outcome. 

 

Furthermore, note that the average high action is close to the middle of the 

action space in G(120) and G(130). Low types do not induce actions close the 

midpoint in any treatment, so the midpoint does not drive results. Still, it could 

be that the midpoint is in some way focal for high actions. T4 and T5 (which 

we discuss in the subsequent subsection) show that this is not the case. In both 

T4 and T5, the midpoint is 60 as in G(120), but in T4 the average high action 

is 49 and in T5 the average high action is 79. (See Figure 7 for a plot of T5.) 
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TABLE 5
PERFORMANCE POOLING VERSUS (ACDC) SEPARATING EQUILIBRIUM 

 ACD Average Prediction Error 
 Pooling Separating Pooling Separating Difference 

G(120) 0.39 0 18.3 10.7 7.5** 
G(130) 0.45 0.22 22.7 12.5 10.2** 
G(210) 0.63 0.50 42.3 33.3 9.0** 
T4 ~ G(240) 0.65 0.56 46.6 37.6 4.5** 

Notes: This table shows the theoretical ACD and the observed prediction error of each 
equilibrium. The prediction error of T4 is scaled (doubled) to make it comparable with the 
other treatments.  

6.2. T5 

There are a few issues we cannot test in G(B). First, we cannot test whether 

ACD also organizes data in a more complicated setting, where the equilibrium 

set is large. Secondly, our conjecture that credible deviations matter gradually 

implies that, even if a neologism proof equilibrium exists, other equilibria admit-

ting few credible deviations may not perform that much worse. Finally, in G(B) 

we cannot discriminate between ACDC on the one hand and NITS and influen-

tiality on the other in terms of selection properties.26 For these two reasons, we 

study T5. 

T5 is the same as G(120), except that the Sender’s disagreement point payoff 

is raised from 0 to 30: d d= =( ) 0,  ( , ) 30.R SU U t  In T5, the maximum equilibri-

um-size is 3 and continua of equilibria exist: 

 

Proposition 5 T5 has a size-1 equilibrium { }1 30 .a =  In addition, it has a set 

of size-2 respectively size-3 equilibria characterized by 1 2 1, 60},{a a a= +  with 

1 [0,30]a Î  and 1 2 3 20, , 6 }{ 0a a a a= = +  with 2 (0,30]a Î . The ACDC equilibrium, 

which is also neologism proof, is 0, ,{ 30 90}.  

 

Observe that all size-3 equilibria survive the influentiality criterion. The size-2 

equilibrium  and all size-3 equilibria survive NITS (relative to lowest type 

                                     
26 The influentiality criterion selects those equilibria with the highest number of actions. 

{0,60}
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t = 0): the lowest type has no incentive to separate, because it obtains its 

highest possible utility in equilibrium. 

As Figure 7 shows, in T5, behavior roughly follows the predictions of the 

ACDC equilibrium, although there is excess separation. Primarily, types close to 

the boundaries between the intervals of the ACDC equilibrium tend to elicit 

different actions than in equilibrium. 

 

FIGURE 7 
This figure shows the type action bubble plot for T5. The bubble plots are clustered on a 

grid of 10. The solid line represents the ACDC equilibrium outcome. 

 

The ACDC equilibrium predicts significantly better than the pooling equilib-

rium. (The prediction error of the separating equilibrium (11.4) is significantly 

smaller at the 5% level than that of the pooling equilibrium (34.3).) Further-

more, Figure 8 shows that in T5 the ACDC equilibrium outperforms the other 

equilibria as well. The left hand side displays the theoretical ACD for the size-2 

and size-3 equilibria. The equilibrium that is characterized by the actions 

(0,30,90) minimizes the ACD and is thus the ACDC equilibrium. The right hand 

side of the figure shows that for this equilibrium the average prediction error of 

the action is minimized. In addition, the rank of an equilibrium’s prediction 

error (right panel in Figure 8) roughly follows the rank an equilibrium’s ACD 

(left panel in Figure 8). (The two plots have a different curvature though.) This 
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is also interesting since the ACDC equilibrium is neologism proof. Equilibria 

that are not neologism proof, but have a small ACD perform quantitatively but 

not qualitatively worse. In sum, ACDC organizes the data quite well.  

 

7. Conclusion 

In this paper we presented an experimental test of ACDC. Our main conclu-

sion is that the results provide systematic support for ACDC: credible devia-

tions matter and they matter gradually. In addition, we find that a neologism 

dynamic can organize the main dynamic characteristics of the data. In De Groot 

Ruiz, Offerman & Onderstal (2012a), we show that ACDC performs at least as 

well as existing criteria in previously conducted experiments. The current study 

supports the predictions of ACDC in a new setting where existing concepts are 

silent.  

 
FIGURE 8 

ACD and performance of size-2 and size-3 equilibria in T5. The left panel plots the theoreti-
cal ACD of the size-2 and sieze-3 equilibria, whereas the right panel plots the average prediction 
error of the equilibria. These equilibria can be characterized by asize–1. There are 31 size-2 
equilibria of the form (a1, a1 + 60) with 0 ≤ a1 ≤ 30 and 30 size-3 equilibria of the form (0, a2, 
a2 + 60) with 0 < a1 ≤ 30. 
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Appendix A: Proofs of Propositions 

Proofs of Propositions 1, 4 and 5 

G(B), T4 and T5 belong to the following game ( , )R Sd dG , which is the uniform 

linear case of the veto threats model we study in De Groot Ruiz, Offerman & 

Onderstal (2012b). ( , )R Sd dG  proceeds as game G(B). However, the Sender’s 

type t is drawn from the interval [0,1]. The Receiver’s and Sender’s payoff on 

the real line are given by ( )RU x x=-  and ( , ) | | .SU x t x t=- -  The disagree-

ment point payoff is ( )R RU dd =-  and ( )S SU dd =-  with , 0.R Sd d >  In De 

Groot Ruiz, Offerman & Onderstal  (2012b), we show that the equilibria of 

( , )R Sd dG  can be characterized as follows:  

 

Lemma 1 Let max{0,min{ 2 ,1 }}.R S Sx d d d= - -  Any equilibrium of the game 

is a partition equilibrium that can be described by a natural number {1,..., }n nÎ

and a set of equilibrium actions 1{ ,..., }na a , such that 

(i) 1
1 2max{0,min{1 , , ( )}}S S R Sa d d d d= - -  if 1n =  

(ii) 1 2min{ ,max{0, 2 }}S Sa d a d= -  if 2n ³   

(iii) 2
2 3min{ ( ),2 ,1 }R S S Sa d d d d= - -  if 2n =  and 1 0a =  

(iv) 1 2 S
k ka a d-= +  if 1ka -  exists and 1 0ka - >  

(v) na x£  if 4R Sd d³  

The maximum size n  is equal to 1 if 1.Sd ³ If 1,Sd <  max 2,
2 S

Rd
n

d

ì üé ùï ïï ïê ú= í ýê úï ïï ê úïî þ
if 

1R Sd d£ +  and 
3 1

max 2,
2 2 Sn

d

ì üé ùï ïï ïê ú= +í ýï ïê úê úï ïî þ
otherwise, where  . é ùê ú  is the ceiling 

function. 
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From Proposition 5 in (the Online Appendix of) De Groot Ruiz, Offerman & 

Onderstal (2012a), it follows that 

 

Lemma 2 The unique ACDC equilibrium of ( , )R Sd dG  with respect to credible 

neologisms is the maximum size equilibrium with the highest equilibrium action. 

 

G(B) corresponds to ( , )R Sd dG  with 5 120
4

R
Bd =  and 1201

2 .S
Bd =  T4 corresponds to 

5 1
8 4( , )G  and T5 to 5 1

4 4( , ).G  Propositions 1, 4 and 5 are direct corollaries of 

Lemmas 1 and 2. 

Proofs of Propositions 2 and 3 

Proof of Proposition 2 Let ( )a t  characterize the equilibrium outcome. In 

our game, ,[ , ]a t t  is a credible neologism iff ( , ) ( ( ), )S SU a t U a t t<  [ , ]t t t" Ï , 

( , ) ( ( ), ) ( , )S SU a t U a t t t t t> " Î  and [ , ]a a t t*= . Hence 1a a<  implies 0t =  and 

na a>  implies t =  B. 

First, let us look at pooling equilibrium .Ps  Consider a low credible neolo-

gism 45.La a< =  Now, 0.Lt =  Furthermore, 
1
( 45) 60.

2
L Lat = + <  Hence, 

[0, ]La a t*=  0=  and Lt  must be 22.5. Next, consider a high credible neologism 

45,Ha >  Ht =  B  and 
1
( 45).

2
H Hat = +  Solving 

1
[ ( 45), ]
2

Ha a B* +  Ha=   yields 

min{Ha = 60,75} 45.B - >  Consequently, 
15

min{ ,60}.
2

H B
t

-
=  

Second, let us look at the separating equilibrium .Ss  There can be no credi-

ble equilibrium 1a a<  as 1 0.a =  Consider a credible neologism 60.a >  Now, 

t =  B  and 
1
( 60).

2
dt = +  Solving 

1
[ ( 60), ]
2

a d B* + a=   yields a =  

min{ 60,80}.B -  Hence, min{ ,70}.
2
B

t =  If 120,B =  then 60a =  and it is no 



35 
 

neologism. If 120,B >  it is a neologism. Finally, consider some neologism with 

1 20 60.a a a= < < =  Since 60,a <  it must be that 60.t <  However, if 60,t <  

then [ , ] 0.a t t* =  Hence a  cannot be a neologism. Q.E.D. 

 

Proof of Proposition 3 First, we show that ( ) ( ).P SACD ACDs s>  Let Ht  

be the lowest deviating type of the high neologism in the pooling equilibrium Ps  

and t  the lowest deviating type of the neologism in the separating equilibrium 

.Ss  Due to the low credible neologism, ( , ) ( , ) 0P SCD t CD ts s> =  for 
45

[0, ).
2

t Î  

For 
45

[ , ),
2

Ht tÎ  ( , ) ( , ) 0.P SCD t CD ts s= =  Since the distance between the 

neologism action and the equilibrium action is larger in the pooling equilibrium 

than in the separating equilibrium and ,Ht t<  it must hold that 

( , ) ( , )P SCD t CD ts s>  for ( ,120].Ht tÎ  Furthermore, ( , ) ( , ) 1P SCD t CD ts s= =  

for [120, ].t BÎ  Hence, [ ( , )] [ ( , )].P S
t tE CD t E CD ts s>  

For the second result, observe that the set of rationalizable actions for the 

Receiver is [0, 60]B -  and that the Sender can always guarantee herself a payoff 

of 0 by rejecting the proposed action. This means that 

( ) (min{ , 60}, )S SU t U t B t= -  and ( ) max{0,min{ (0, ),S SU t U t=  ( 60, )}}.SU B t-  

Using Proposition 1 and Proposition 2, we get for the ACD of the separating 

equilibrium 
120

min{70, /2}

{(60 (min{80, 60} ) (60 | 60 |)}1
( )

( ) ( )
S

S S
B

t B t
ACD dt

B U t U t
s

- - - - - -
=

-ò
120

.
B

B
-

+  It is readily verified that this function is zero for 120B =  and 

strictly increasing in B for 120.B ³  Q.E.D. 
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Appendix B (Online): Neologism Dynamic 

We first describe the standard, simple, best response dynamic. In each period 

all Sender types and the Receiver choose a strategy. We assume that the Sender 

in the acceptance stage accepts all actions that yield her nonnegative payoff: 

( , ) 1a tn =  if ( , ) 0SU a t ³  and ( , ) 0a tn =  otherwise. The strategy of the Sender 

in period r  is then given by :r T Mm  D  and that of the Receiver by 

: .r M Aa   Let ( )rm t  denote the message Sender type t  sends (which may be 

a random variable) and ( )ra m  denote the Receiver’s action after receiving 

message m . Both players best respond to the strategy of the other player in the 

previous round. First, the support of ( )r tm  is equal to 1arg max ( ( ), ).S
m M rU a m tÎ -

In particular, we assume the Sender randomizes uniformly over the set of best 

responses. Second, ( ) arg max ( , ) [ ( , ) | ( )],R r
r a A ta m U a t E a t mn bÎ=  where ( )r mb  is 

derived from 1rm - by Bayes rule whenever possible.27 If rb  cannot be derived 

from 1rm - , then ( )r r mb b=  for some randomly chosen m Î t TÎÈ supp 1( ).r tm -  

The neologism dynamic differs from the best response dynamic on one crucial 

aspect: Senders can send credible neologisms, which will be believed. We define 

,a N  as a credible neologism with respect to Receiver strategy ra  if (i) 

( , ) arg max ( ( ), )· ( ( ), )S S
m M r rU a t U a m t a m tnÎ>  for all ,t NÎ  (ii) 

(( , ) arg max ( ), )· ( ( ), )S S
m M r rU a t U a m t a m tnÎ£  for all t NÏ  and (iii) 

arg max ( , ) [ ( , ) | ].R
a A ta U a t E a t t NnÎ= Î 28 

                                     
27 We assume (for ease of exposition) that there is one unique best response for the Receiver, 

which is generically the case in our game. In case there are more optimal actions one could let 
the Receiver randomize. 

28 We need to point out the following subtlety. If a credible neologism was used in the previ-
ous period, it becomes just a message (which may have acquired a new ‘meaning’). If the same 
credible neologism has to be made in the following period, it cannot be the same literal message, 
as then it would not be a neologism. Hence, the Sender can add for instance Really! or Really, 
Really! etc. to make it a neologism and distinguish it from the old message. 
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Now, in the neologism dynamic all Senders that can send a credible neologism 

in round r  with respect to 1,ra -  will do so and such credible neologisms will be 

believed by the Receivers in round r. In all other cases, the dynamic is identical 

to a best response dynamic. We call the neologism dynamic ( , ).r rf am  

This best response dynamic bears similarities to a level-k analysis. The differ-

ence is that in level-k, in each iteration just one player (Sender or Receiver) 

changes her strategy. In the best response dynamic, both players change their 

strategy each period. Still, the best response dynamic converges in all cases 

below to very similar outcomes as the outcomes a level-k analysis would con-

verge to. 

Before analyzing the dynamic, we characterize the best responses and neolo-

gisms. The Sender’s best response is simply to induce the action closest to her 

type. We call the Receiver’s best response [ , ]a t t*  if Sender types are uniformly 

distributed in the interval [ , ].t t  [ , ]a t t*  is single-valued and equal to 

1
min{ 60,45 }.

2
t t- +  Let max { ( )}m M ra a mÎ=  be the highest action of a Re-

ceiver’s strategy. Then, for 120B =  and 130,B =  there exists a high credible 

neologism with respect to ra  if and only if 60.a B< -  In particular, it is equal 

to 
60

60,( ,130]
2

B a
B

- +
-  if 3( 120) 60B a B- £ < -  and 

2
60 / 3,( (45 ),130]

3
a a+ +  if 3( 120).a B< -  For 210,B =  there exists a high 

credible neologism if and only if 90,a <  and in this case it is equal to 

1 2
60 ,( (45 ),130] .

3 3
a a+ +  

We restrict our analysis to two natural initial strategy profiles: babbling 

(where no information is transmitted) and naive (where all possible information 

is transmitted). 
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For G(120), G(130) and G(210), we (i) give the attractor,29 (ii) show that 

both the babbling and naive initial profiles lie in its basis of attraction and (iii) 

calculate the average prediction error of the pooling and separating equilibria for 

the attractor.   

G(120) 

For 120,B =  it is easy to check that the equilibrium profile is a steady state 

of the neologism dynamic: 1( )rm t m=  for [0,30]t Î  and 2 1( )rm t m m= ¹  for 

[30,120]t Î , and 1( ) 0ra m =  and 2( ) 60.ra m =  It is a steady state of the best 

response dynamic and no neologism relative to ra  exists. 

 

If we start with a babbling profile in period 1, the neologism dynamic pro-

ceeds as follows: 

 

Strategy Sender period 1 (Babbling) Strategy Receiver period 1 (Babbling) 

1( ) [0,120]m t U~  if [0,120]t Î  1( ) 45a m = for all [0,120]m Î  
where all Senders randomize uniformly over the interval [1,120]. 

 

Strategy Sender period 2 (Babbling)   Strategy Receiver period 2 (Babbling) 
1

2( )m t n=  if [0, 45 / 2)t Î    2( ) 0a m =  if 1m n=  

2( ) [0,120]m t U~  if 1
60 10 15t< = <    2( ) 45a m =  if [0,120]m Î  

2
2( )m t n=  if (105 / 2,120]t Î    2( ) 60a m =  if = 2m n  

where 1 0,[0,45 / 2)n =  and 2 60,[105 / 2,120)n =  

 

Strategy Sender period 3  (Babbling)   Strategy Receiver period 3  (Babbling) 
1

3( )m t n=  if [0, 45 / 2)t Î   
 
285

40.7
7
  if 1[0,120] { }m nÎ È  

3( ) [0,120]m t U~  if [45 / 2,105 / 2)t Î    3( ) 60a m =  if 2m n=  
2

3( )m t n=  if [105 / 2,120]t Î . 

 

                                     
29 An attractor is roughly speaking a set in the phase-space the neighborhood of which the 

dynamic evolves to after sufficient time. This can be, for instance, a steady state or a higher n-
cycle. 
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Strategy Sender period 4 (Babbling)   Strategy Receiver period 4 (Babbling) 
1

4( ) [0,120] { }m t U n~ È  if [0,30)t Î   4( ) 0a m =  if 1[0,120] { }m nÎ È  
2

4( )m t n=  if [30,120]t Î    4( ) 60a m =  if 2m n=  

 

Hence, from period 4, the dynamic is and stays in the separating equilibrium. 

If we start with a naive profile in period 1, the neologism dynamic proceeds 

as follows: 

 

Strategy Sender period 1  (Naive)   Strategy Receiver period 1 (Naive) 

1( )m t t=  if [0,120]t Î  1( ) 0a m =  if [0, 60]m Î  
 1( ) 60a m m= -  if [60,120]m Î  
where all Senders randomize uniformly over the interval [1,120] 

 

Strategy Sender period 2 (Naive)   Strategy Receiver period 2(Naive) 

2( ) [0,60]m t U~  if 0t =    2( ) 0a m =  for all [0, 60]m Î  

2( ) 60m t t= +  if (0,60)t Î    2( ) 60a m m= -  for all [60,120]m Î  

2( ) 120m t =  if [60,120]t Î   

 

[Strategy Sender period 3  (Naive)   Strategy Receiver period 3  (Naive) 

3( ) [0,60]m t U~  if 0t =    3( ) 0a m =  if [0,120)m Î  

3( ) 60m t t= +  if [0,60)t Î    3( ) 60a m =  if 120m =  

3( ) 120m t =  if [60,120]t Î   

 

Strategy Sender period 4 (Naive)   Strategy Receiver period 4(Naive) 

4( ) [0,120)m t U~  if [0,30)t Î    4( ) 0a m =  if [0,120)m Î  

4( ) 120m t =  if [30,120]t Î    4( ) 60a m =  if 120m =  

 

Hence, from period 4, the dynamic is and stays in the separating equilibrium. 

Now we turn to the prediction error. Let the equilibrium profile be es  and 

the attracting profile as . Then, the average (or expected) prediction error of an 

equilibrium for the attracting profile is ( ( )) ( ( ))e e a aE a m t a m té ù-ê úë û . The average 

prediction error of the separating equilibrium is obviously 0. The prediction 

error of the pooling equilibrium is 
30 120

0 30

1
45 0 45 60 45 / 2

120
dt dt

æ ö÷ç - + - =÷ç ÷è øò ò . 
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G(130)  

For 130B = , consider the following state r ¢ :  

Strategy Sender period r ¢    Strategy Receiver period r ¢   
 1( )

r
m t m¢ =  if 1[0, )t tÎ    ( ) 0

r
a m¢ =  if 1 2{ , }m m mÎ   

2( )
r

m t m¢ =  if 1 2[ , )t t tÎ    1( )
r

a m a¢ =  if 3m m=   
3( )

r
m t m¢ =  if 2[ ,130]t tÎ    

with the restriction that 1 20 50t t£ < <  and 50 1 70a< < . 1 2 3, ,m m m  can be any 
three messages.  

 

Then, by straightforwardly applying the neologism dynamic, we get the fol-

lowing for rounds 1, 2, 3r r r¢ ¢ ¢+ + +  and 4r ¢ +   

    

 Strategy Sender period 1r ¢ +    Strategy Receiver period  1r ¢ +  
 1 2

1( ) { , }rm t U m m¢+ ~  if 1[0, / 2)t aÎ    1( ) 0ra m¢+ =  if 1 2{ , }m m mÎ   
3

1( )rm t m¢+ =  if 1 1[ / 2,35 / 2]t a aÎ +    2
1( ) 45 / 4ra m t¢+ = +  if 3m m=   

1
1( )rm t n¢+ =  if 1(35 / 2,130]t aÎ +    1( ) 70ra m¢+ =  if 1m n=   

where 1n  is the credible neologism 170,(35 / 2,130]a+ . Furthermore, a Sender in 
1[0, / 2)a , will randomize uniformly over 1m  and 2m .  

    
 Strategy Sender period 2r +    Strategy Receiver period 2r ¢ +   
 1 2

2( ) { , }rm t U m m¢+ ~  if 
2[0, 45 / 2 / 4)t tÎ +   

 1( ) 0ra m¢+ =  if 1 2{ , }m m mÎ   

3
2( )rm t m¢+ =  if 

2 2[45 / 2 / 4,115 / 2 / 4)t t tÎ + +   

 1
1( ) / 2 25ra m a¢+ = -   if 3m m=   

1
2( )rm t n¢+ =  if 2[115 / 2 / 4,130]t tÎ +    1( ) 70ra m¢+ =  if 1m n=   

   
Hence, if player type is in 1[0, / 2)a , then she will randomize uniformly over 

1m  and 2m .  
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Strategy Sender period 3r ¢ +    Strategy Receiver period 3r ¢ +   
 1 2

3( ) { , }rm t U m m¢+ ~  if 
1[0, / 4 25 / 2)t aÎ -   

 3( ) 0ra m¢+ =  if 1 2{ , }m m mÎ   

3
3( )rm t m¢+ =  if 

1 1[ / 4 25 / 2, / 4 45 / 2)t a aÎ - +   

 2
3( ) / 4 5 / 2ra m t¢+ = -   if 3m m=   

1
3( )rm t n¢+ =  if 1[ / 4 45 / 2,130]t aÎ +    3( ) 70ra m¢+ =  if 1m n=   

   
 Strategy Sender period 4r ¢ +    Strategy Receiver period 4r ¢ +   
 1 2

4( ) { , }rm t U m m¢+ ~  if 
2[0, / 8 5 / 4)t tÎ -   

 n 4( ) 0ra m+ =  if 1 2 3{ , , }m m m mÎ   

3
4( )rm t m¢+ =  if 

2 2[ / 8 5 / 4, / 8 135 / 4)t t tÎ - +   

 1
4( ) / 8 225 / 4ra m a¢+ = +   if 1m n=   

14( )rm t n¢ + =  if 2[ / 8 135 / 4,130]t tÎ +   

    
Hence, starting at period r¢ ,we can characterize 4f  by 

1 1
1 / 8 225 / 4p pa a+ = + , 1

pt , 1
1pt + =  2 / 8 5 / 4pt -  and 2 2

1 1135 / 4 / 8p pt t+ += +  (as 

long as 1 20 50p pt t£ < <  and 150 70pa< < ).  

1 2450 / 7,p pa t=  270 / 7=  and 1
pt  25 / 7=  is a steady state and attractor to 

which the dynamic converges monotonically. Hence, if in some period the strate-

gy profile meets the conditions in r¢ , then f  converges to the 4-cycle character-

ized by above values.  

We proceed to give the first periods of the neologism dynamic for the bab-

bling and naive initial conditions. We end as soon as the dynamic meets the 

sufficient conditions for their respective attractors specified above.  

If we start with a babbling profile in period 1, the neologism dynamic pro-

ceeds as follows:  

 
 Strategy Sender period 1  (Babbling)   Strategy Receiver period 1  (Babbling)  
 1( ) [0,130]m t U~   if [0,130]t Î    1( ) 45a m = for all [0,130]m Î   
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Strategy Sender period 2 (Babbling)   Strategy Receiver period 2 (Babbling)  
 1

2( )m t n=  if [0, 45 / 2)t Î    2( ) 0a m = if 1m n=   
 2( ) [0,130]m t U~   if [45 / 2,115 / 2]t Î    2( ) 45a m = if [0,130]m Î   

 2
2( )m t n=  if (115 / 2,130]t Î    2( ) 70a m =  if 2m n=   

where 1 0,[0,45 / 2)n =  and 2 70,(115 / 2,130] .n =   

 

Strategy Sender period 3  (Babbling)   Strategy Receiver period 3  (Babbling)  
 1

3( )m t n=  if [0, 45 / 2)t Î    3( ) 0a m = if 1[0,130] { }m nÎ È   
 3( ) [0,130]m t U~   if [45 / 2,115 / 2)t Î    3( ) 70a m = if 2m n=   

 2
3( )m t n=  if [115 / 2,130]t Î    

    

Strategy Sender period 4 (Babbling)   Strategy Receiver period 4 (Babbling)  
 1

4( ) [0,130]m t U n~ È   if [0, 35)t Î    4( ) 0a m = if 1[0,130]m nÎ È   

 2
4( )m t n=  if [35,130]t Î    4( ) 70a m =  if 2m n=  

    

Strategy Sender period 5  (Babbling)   Strategy Receiver period 5  (Babbling)  
 1

5( ) [0,130]m t U n~ È   if [0, 35)t Î    5( ) 0a m = if 1[0,130]m cupnÎ   

 2
5( )m t n=  if [35,130]t Î    5( ) 125 / 2a m =  if 2m n=   

   

 Strategy Sender period 6  (Babbling)   Strategy Receiver period 6  (Babbling)  
 1

6( ) [0,130] { }m t U n~ È   if [0,125 / 4)t Î    6( ) 0a m = if 1[0,130] { }m nÎ È   

 2
6( )m t n=  if (125 / 4,265 / 4]t Î    6( ) 125 / 2a m =  if 2m n=   

 3
6( )m t n=  if (265 / 4,130]t Î    6( ) 70a m =  if 3m n=   

where 3 70,(265 / 4,130]n = .   

 

 Strategy Sender period 7  (Babbling)   Strategy Receiver period 7  (Babbling)  
 1

7( ) [0,130] { }m t U n~ È   if [0,125 / 4)t Î    7( ) 0a m = if 1[0,130] { }m nÎ È   

 2
7( )m t n=  if [125 / 4,265 / 4)t Î    7( ) 25 / 4a m = if 2m n=   

 3
7( )m t n=  if [265 / 4,130]t Î    7( ) 70a m =  if 3m n=   

    

Strategy Sender period 8  (Babbling)   Strategy Receiver period 8  (Babbling)  
 1

8( ) [0,130] { }m t U n~ È   if [0, 25 / 8 )t Î    8( ) 0a m = if 1 2[0,130] { , }m n nÎ È   

 2
8( )m t n=  if [25 / 8,305 / 8)t Î    8( ) 25 / 4a m =  if 2m n=   

 3
8( )m t n=  if [305 / 8,130]t Î    8( ) 70a m =  if 3m n=   
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Strategy Sender period 9  (Babbling)   Strategy Receiver period 9  (Babbling)  
 1 2

9( ) [0,130] { , }m t U n n~ È  if 
[0, 25 / 8 )t Î   

 9( ) 0a m = if 1 2[0,130] { , }m n nÎ È   

 2
9( )m t n=  if [25 / 8,585 / 16]t Î    9( ) 1025 / 16a m =  if 3m n=   

 3
9( )m t n=  if [585 / 16,130]t Î    

   

 Strategy Sender period 10 (Babbling) Strategy Receiver period 10 (Babbling) 
1 2

10( ) [0,130] { , }m t U n n~ È if 
[0,1025 / 32)t Î   

 10( ) 0a m = if 1 2[0,130] { , }m n nÎ È   

 3
10( )m t n=  if [1025 / 32,2145 / 32]t Î    10( ) 125 / 2a m =  if 3m n=   

 4
10( )m t n=  if (2145 / 32,130]t Î    10( ) 70a m =  if 4m n=   

where 4 70,(2145 / 32,130] .n =    

 

Strategy Sender period 11 (Babbling) Strategy Receiver period 11 (Babbling) 
 1 2

11( ) [0,130] { , }m t U n n~ È  if 
[0,125 / 4)t Î   

 11( ) 0a m = if 1 2[0,130] { , }m n nÎ È   

 3
11( )m t n=  if [125 / 4,265 / 4)t Î    11( ) 225 / 32a m =  if 3m n=   

 4
11( )m t n=  if [265 / 4,130]t Î    11( ) 70a m =  if 4m n=   

   

 Strategy Sender period 12 (Babbling) Strategy Receiver period 12 (Babbling) 
 1 2

12( ) [0,130] { , }m t U n n~ È   if 
[0, 225 / 64)t Î   

 12( ) 0a m = if 1 2[0,130] { , }m n nÎ È   

 3
12( )m t n=  if [225 / 64,2465 / 64)t Î    12( ) 25 / 4a m =  if 3m n=   

 4
12( )m t n=  if [2465 / 64,130]t Î    12( ) 70a m =  if 4m n=   

   

 Strategy Sender period 13 (Babbling) Strategy Receiver period 13 (Babbling) 
 1 2

13( ) [0,130] { , }m t U n n~ È   if 
[0, 25 / 8)t Î   

 13( ) 0a m = if 1 2 3[0,130] { , , }m n n nÎ È   

 3
13( )m t n=  if [25 / 8,305 / 8)t Î    13( ) 8225 / 128a m =  if 4m n=   

 4
13( )m t n=  if [305 / 8,130]t Î    

   

Now, 1 2
13 1325 / 8 305 / 8 50t t= < = <  and 1

1350 8225 /128 70.a< = <  Hence, 

period 13 meets the requirements of round r ¢  and the dynamic converges to the 

attracting four-cycle.  

If we start with a naive profile in period 1, the neologism dynamic proceeds 

as follows:  
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 Strategy Sender period 1  (Naive)   Strategy Receiver period 1  (Naive)  
 1( )m t t=   if [0,130]t Î    1( ) 0a m =  if [0, 60]m Î   
   1( ) 60a m m= -  if [60,130]m Î   

    

Strategy Sender period 2 (Naive)   Strategy Receiver period 2 (Naive)  
 2( ) [0,60]m t U~   if 0t =    1( ) 0a m =  if [0, 60]m Î   
 2( ) 60m t t= +  if (0, 70)t Î    1( ) 60a m m= -  if [60,130]m Î   
 2( ) 130m t =  if [70,130]t Î    

    

Strategy Sender period 3 (Naive)   Strategy Receiver period 3 (Naive)  
 3( ) [0, 60]m t U~   if 0t =    3( ) 0a m =  if [0,120)m Î   
 3( ) 60m t t= +  if [0,70)t Î    3( ) 120a m m= -  if [120,130)m Î   
 3( ) 120m t =  if [70,130]t Î    3( ) 70a m =  if 130m =   

    

 Strategy Sender period 4 (Naive)   Strategy Receiver period 4 (Naive)  
 4( ) [0,120]m t U~   if 0t =    4( ) 0a m =  if [0,120)m Î   
 4( ) 120m t t= +  if [0,10)t Î    4( ) 120a m m= -  if [120,130)m Î   
 4( ) 130m t = -   if [10, 40)t Î    4( ) 70a m =  if 130m =   
 4( ) 130m t =  if [40,130]t Î    

    

 Strategy Sender period 5 (Naive)   Strategy Receiver period 5 (Naive)  
 5( ) [0,120]m t U~   if 0t =    5( ) 0a m =  if [0,130)m Î   
 5( ) 120m t t= +  if [0,10)t Î    5( ) 65a m =  if 130m =   
 5( ) 130m t = -   if [10, 40)t Î    
 5( ) 130m t =  if [40,130]t Î    

    

 Strategy Sender period 6 (Naive)   Strategy Receiver period 6 (Naive)  
 6( ) [0,130)m t U~  if [0, 65 / 2)t Î    6( ) 0a m =  if [0,130)m Î   
 6( ) 130m t =  if [65 / 2,135 / 2]t Î    6( ) 65a m =  if 130m =   
 6 1( )m t n=  if (135 / 2,130]t Î    6( ) 70a m =  if 1m n=   

where 1 70,(135 / 2,130]n = .  

    

 Strategy Sender period 7 (Naive)   Strategy Receiver period 7 (Naive)  
 7( ) [0,130)m t U~  if [0, 65 / 2)t Î    7( ) 0a m =  if [0,130)m Î   
 7( ) 130m t =  if [65 / 2,135 / 2]t Î    7( ) 15 / 2a m =  if 130m =   
 7 1( )m t n=  if (135 / 2,130]t Î    7( ) 70a m =  if 1m n=   
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 Strategy Sender period 8 (Naive)   Strategy Receiver period 8 (Naive)  
 8( ) [0,130)m t U~  if [0,15 / 4)t Î    8( ) 0a m =  if [0,130)m Î   
 8( ) 130m t =  if [15 / 4,155 / 4]t Î    8( ) 15 / 2a m =  if 130m =   
 8 1( )m t n=  if (155 / 4,130]t Î    8( ) 70a m =  if 1m n=   

    

Strategy Sender period 9 (Naive)   Strategy Receiver period 9 (Naive)  

9( ) [0,130)m t U~  if [0,15 / 4)t Î }   9( ) 0a m =  if [0,130]m Î   

9( ) 130m t =  if [15 / 4,155 / 4]t Î }   9( ) 515 / 8a m =  if 1m n=   

9 1( )m t n=  if (155 / 4,130]t Î }   
    

Now, 1 2
9 915 / 4 155 / 4 50t t= < = <  and 1

950 515 / 8 70.a< = <  Hence, peri-

od 9 meets the requirements of round r ¢  and the dynamic converges to the 

attracting four-cycle.  

Finally, we turn to the prediction errors for the attracting four-cycle. First 

the pooling equilibrium. In the same way as above, it can be straightforwardly 

calculated that prediction error of the pooling equilibrium in periods ,r ¢  1,r ¢ +   

2r ¢ +  and 3r ¢ +  is respectively equal to 
17145 2585 304 2640

, ,  and .
637 91 91 91

 Hence, 

the average prediction error of the pooling equilibrium over the four cycle is 

18750
29.4.

637
  The prediction error of the separating equilibrium in periods ,r ¢  

1,r ¢ +   2r ¢ +  and 3r ¢ +  is respectively equal to 
4440 635 1825 7625

, ,  and .
637 91 91 91

 

Hence, the average prediction error of the separating equilibrium over the four 

cycle is 
29285

11.5
2548

 .  

G(210) 

We continue with 210.B =  Consider the following state r ¢ :  
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 Strategy Sender period r ¢    Strategy Receiver period r ¢   
 1( )rm t m¢ =  if 1[0, )t tÎ    ( ) 0ra m¢ =  if 1 2{ , }m m mÎ   

 2( )rm t m¢ =  if 1 2[ , )t t tÎ    1( )ra m a¢ =  if 3m m=   

 3( )rm t m¢ =  if 2 3[ , )t t tÎ    2( )ra m a¢ =  if 4m m=   

 4( )rm t m¢ =  if 3 4[ , )t t tÎ    3( )ra m a¢ =  if 5m m=   

 5( )rm t m¢ =  if 4 5[ , ]t t tÎ    4( )ra m a¢ =  if 1m n=   

 1( )rm t n¢ =  if 5( ,210]t tÎ    

where 1 2 3 4 5t t t t t< < < <  with 10 15,t< <  3 60t <  and 5 90;t <  
1 2 3 40 a a a a< < < <  with 2 30a <  and 4 90a <  and 1 4 5,[ ,210] .n a t=   

 
Then, by straightforwardly applying the neologism dynamic, we get for round 1r ¢ + :  
 
 Strategy Sender period 1r ¢ +    Strategy Receiver period 1r ¢ +   
 1

1( )rm t m¢+ =  if 1[0, / 2)t aÎ    1( ) 0ra m¢+ =  if 1 2 3{ , , }m m m mÎ   

 3
1( )rm t m¢+ =  if 1 1 2[ / 2,( ) / 2)t a a aÎ +    4

1( ) 60ra m t¢+ = -  if  4m m=   

 4
1( )rm t m¢+ =  if 

1 2 2 3[( ) / 2,( ) / 2)t a a a aÎ + +   

 5
1( ) 60ra m t¢+ = - if 5m m=   

 5
1( )rm t m¢+ =  if 

2 3 3 4[( ) / 2,( ) / 2)t a a a aÎ + +   

 5
1( ) 45 / 2ra m t¢+ = +   if 1m n=   

 1
1( )rm t n¢+ =  if 

3 4 42
[( ) / 2, (45 )]

3
t a a aÎ + +   

 4
1( ) 60 / 3ra m a¢+ = + if 2m n=   

 2
1( )rm t n¢+ =  if 42

( (45 ),210]
3

t aÎ +   
 

where 2 4 42
60 / 3,( (45 ),210] .

3
n a a= + +   

 

Hence, for period r r ¢³ we can describe f  by 4 4
1 60 / 3,r ra a+ = +  

5 4
1

2
(45 / 3),

3r rt a+ = +  3 5
1 45 / 2,r ra t+ = + 4 3 4

1

1
( ),

2r r rt a a+ = + 2 5
1 60,r ra t+ = -  

3 2 3
1

1
( ),

2r r rt a a+ = +  1 4
1 60,r ra t+ = - 2 1 2

1

1
( )

2r r rt a a+ = + and 1 1
1

1
2r rt a+ =  (as long as 

1 5,...,r ra a  and 1 5,...,r rt t  meet the above conditions).  

Since 4 4
1 60 / 3,r ra a+ = +  4

ra  converges monotonically to 90. Consequently, it 

follows that  
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4 590,  90,r ra t= =  3
ra  90,=  4 90,rt =  2

ra  30,=  3 160,  r rt a=  30,=   2 30rt =  and 

1 15rt =  is an attractor for this dynamic to which converges. (It is not a steady 

state, as if 4 90ra = , then no neologism could be made. Nonetheless, the profile is 

never reached and all points in its neighborhood converge to it.)  

We now proceed to give the first periods of the neologism dynamic for the 

babbling and naive initial conditions.  

If we start with a babbling profile in period 1, the neologism dynamic pro-

ceeds as follows:  

    
 Strategy Sender period 1  (Babbling)   Strategy Receiver period 1  (Babbling)  
 1( ) [0, 210]m t U~   if [0, 210]t Î    1( ) 45a m = for all [0, 210]m Î   

    

Strategy Sender period 2 (Babbling)   Strategy Receiver period 2 (Babbling)  
 1

2( )m t n=  if [0, 45 / 2)t Î    2( ) 0a m = if 1m n=   
 2( ) [0,210]m t U~   if [45 / 2, 60]t Î    2( ) 45a m = if [0, 210]m Î   

 2
2( )m t n=  if (60,210]t Î    2( ) 75a m =  if 2m n=   

where 1 0,[0,45 / 2)n =  and 2 75,(60,210] .n =   

    

 Strategy Sender period 3 (Babbling)   Strategy Receiver period 3 (Babbling)  
 1

3( )m t n=  if [0, 45 / 2)t Î    3( ) 0a m = if 1[0,210] { }m nÎ È   
 3( ) [0,210]m t U~  if [45 / 2,60)t Î    3( ) 75a m = if 2m n=   

 2
3( )m t n=  if [60, 80]t Î    3( ) 85a m =  if 3m n=   

 3
3( )m t n=  if (80,210]t Î    

where 3 85,(80,210] .n =    

   

 Strategy Sender period 4 (Babbling)   Strategy Receiver period 4 (Babbling)  
 1

4( ) [0,210] { }m t U n~ È  if [0, 75 / 2)t Î    4( ) 0a m = if 1[0,210] { }m nÎ È   

 2
4( )m t n=  if [75 / 2,80)t Î    4( ) 20a m =  if 2m n=   

 3
4( )m t n=  if [80, 260 / 3]t Î    4( ) 85a m =  if 3m n=   

 4
4( )m t n=  if (260 / 3,210]t Î    4( ) 265 / 3a m =  if 4m n=   

where 4 265 / 3,(260 / 3,210] .n =    
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 Strategy Sender period 5 (Babbling)   Strategy Receiver period 5 (Babbling)  
 1

5( ) [0,210] { }m t U n~ È  if [0,10)t Î    5( ) 0a m = if 1[0,210] { }m nÎ È   

 2
5( )m t n=  if [10,105 / 2)t Î    5( ) 20a m =  if 2m n=   

 3
5( )m t n=  if [105 / 2,260 / 3)t Î    5( ) 80 / 3a m =  if 3m n=   

 4
5( )m t n=  if [260 / 3,800 / 9]t Î    5( ) 265 / 3a m =  if 4m n=   

 5
5( )m t n=  if (800 / 9,210]t Î    5( ) 805 / 9a m =  if 5m n=   

where 5 805 / 9,(800 / 9,210] .n =    

   

 Strategy Sender period 6 (Babbling)   Strategy Receiver period 6 (Babbling)  
 1

6( ) [0,210] { }m t U n~ È  if [0,10)t Î    6( ) 0a m = if 1 2[0,210] { , }m n nÎ È   

 2
6( )m t n=  if [10, 70 / 3)t Î    6( ) 80 / 3a m =  if 3m n=   

 3
6( )m t n=  if [70 / 3,115 / 2)t Î    6( ) 260 / 9a m =  if 4m n=   

 4
6( )m t n=  if [115 / 2,800 / 9)t Î    6( ) 805 / 9a m =  if 5m n=   

 5
6( )m t n=  if [800 / 9,2420 / 5]t Î    6( ) 2425 / 27a m = if 6m n=   

 6
6( )m t n=  if (2420 / 27,210]t Î    

where 6 2425 / 27,(2420 / 27,210] .n =   

  

Now, 1
60 10 15,t< = < 3

6 115 / 2 60,t = < 5
6 2420 / 27 90,t = < 2

6 260 / 9 30a = <  

and 4
6 2425 / 27 90a = <  Hence, period 6 meets the requirements of round r ¢  

and the dynamic converges to the attractor.  

 If we start with a naive profile in period 1, the neologism dynamic proceeds 

as follows:  

 
Strategy Sender period 1  (Naive)   Strategy Receiver period 1  (Naive)  
 1( )m t t=   if [0, 210]t Î    1( ) 0a m =  if [0, 60]m Î   
   1( ) 60a m m= -  if [60,210]m Î   

    

 Strategy Sender period 2 (Naive)   Strategy Receiver period 2 (Naive)  
 2( ) [0,60]m t U~  if 0t =    2( ) 0a m =  for all [0, 60]m Î   

 2( ) 60m t t= +  if (0,150)t Î    2( ) 60a m m= -  for all [60,210]m Î   
 2( ) 210m t =  if [150,210]t Î    

    

Strategy Sender period 3 (Naive)   Strategy Receiver period 3 (Naive)  
 3( ) [0,60]m t U~  if 0t =    3( ) 0a m =  if [0,120)m Î   

 3( ) 60m t t= +  if (0,150)t Î    3( ) 120a m m= -  if [120, 210)m Î   
 3( ) 210m t =  if [150,210]t Î    3( ) 120a m =  if 210m =   
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 Strategy Sender period 4 (Naive)   Strategy Receiver period 4 (Naive)  
 4( ) [0,120]m t U~  if 0t =    4( ) 0a m =  if [0,120)m Î   

 4( ) 120m t t= +  if (0, 90)t Î    4( ) 120a m m= -  if [120, 210)m Î   
 4( ) 210m t = -   if [90,105)t Î    4( ) 120a m =  if 210m =   
 4( ) 210m t =  if [105,210]t Î    

    

Strategy Sender period 5 (Naive)   Strategy Receiver period 5 (Naive)  
 5( ) [0,120]m t U~  if 0t =    5( ) 0a m =  if [0,180)m Î   

 5( ) 120m t t= +  if (0, 90)t Î    5( ) 180a m m= -  if [180, 210 )m Î -    
 5( ) 210m t = -   if [90,105)t Î    5( ) 45a m =  if 210m = -   
 5( ) 210m t =  if [105,210]t Î    5( ) 195 / 2a m =  if 210m =   

   

 Strategy Sender period 6 (Naive)   Strategy Receiver period 6 (Naive)  
 6( ) [0,180]m t U~  if 0t =    6( ) 0a m =  if [0,180)m Î   

 6( ) 180m t t= +  if (0, 30)t Î    6( ) 180a m m= -  if [180, 210 )m Î -    
 6( ) 210 2m t = -   if [30, 75 / 2)t Î    6( ) 45a m =  if 210m = -   
 6( ) 210m t = -   if [75 / 2,285 / 4)t Î    6( ) 195 / 2a m =  if 210m =   
 6( ) 210m t =  if [285 / 4,210]t Î    

    

Strategy Sender period 7 (Naive)   Strategy Receiver period 7 (Naive)  
 6( ) [0,180]m t U~  if 0t =    7( ) 0a m =  if [0, 210 2 )m Î -    

 7( ) 180m t t= +  if (0, 30)t Î    7( ) 45 / 4a m =  if 210m = -   
 7( ) 210 2m t = -   if [30, 75 / 2)t Î    7( ) 645 / 8a m =  if 210m =   
 7( ) 210m t = -   if [75 / 2,285 / 4)t Î    
 7( ) 210m t =  if [285 / 4,210]t Î    

   

 Strategy Sender period 8 (Naive)   Strategy Receiver period 8 (Naive)  
 8( ) [0,210 2 )m t U~ -   if [0, 45 / 8)t Î    8( ) 0a m =  if [180, 210 2 )m Î -    
 8( ) 210m t = -   if [45 / 8,735 / 16)t Î    8( ) 45 / 4a m =  if 210m = -   
 8( ) 210m t =  if [735 / 16,335 / 4)t Î    8( ) 645 / 8a m =  if 210m =   

 1
8( )m t n=  if [335 / 4,210]t Î    8( ) 695 / 8a m =  if 1m n=   

where 1 695 / 8,(335 / 4,210] .n =    
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Strategy Sender period 9 (Naive)   Strategy Receiver period 9 (Naive)  
 9( ) [0,210 2 )m t U~ -   if [0, 45 / 8)t Î    9( ) 0a m =  if [0, 210 )m Î -    
 9( ) 210m t = -   if [45 / 8,735 / 16)t Î    9( ) 95 / 4a m =  if 210m =   
 9( ) 210m t =  if [735 / 16,335 / 4)t Î    9( ) 695 / 8a m =  if f 1m n=   

 1
9( )m t n=  if [335 / 4,1055 / 12]t Î    9( ) 2135 / 24a m =  if 2m n=   

 2
9( )m t n=  if (1055 / 12,210]t Î    

where 2 2135 / 24,(1055 /12,210] .n =    

   

 Strategy Sender period 10 (Naive) Strategy Receiver period 10 (Naive)  
 10( ) [0,210 )m t U~ -   if [0, 95 / 8)t Î    10( ) 0a m =  if [0, 210 )m Î -    
 10( ) 210m t =  if [95 / 8,885 / 16)t Î    10( ) 95 / 4a m =  if 210m =   

 1
10( )m t n=  if [885 / 16,1055 / 12)t Î    10( ) 335 / 12a m =  if 1m n=   

 2
10( )m t n= if [1055 / 12,3215 / 36]t Î    10( ) 2135 / 24a m =  if 2m n=   

 3
10( )m t n= if (3215 / 36,210]t Î    10( ) 6455 / 72a m = if 3m n=   

where 3 6455 / 72,(3215 / 36,210] .n =    

   

 Strategy Sender period 11 (Naive) Strategy Receiver period 11 (Naive)  
 11( ) [0, 210 )m t U~ -   if [0, 95 / 8)t Î    11( ) 0a m =  if [0, 210]m Î   
 11( ) 210m t =  if [95 / 8,155 / 6)t Î    11( ) 335 / 12a m =  if 1m n=   

 1
11( )m t n=  if [155 / 6,935 / 16)t Î    11( ) 1055 / 36a m =  if 2m n=   

 2
11( )m t n= if [935 / 16,3215 / 36)t Î    11( ) 6455 / 72a m =  if 3m n=   

 3
11( )m t n= if [3215 / 36,9695 / 108]t Î    11( ) 19415 / 216a m =  if 4m n=   

 4
11( )m t n= if (9695 / 108,210]t Î    

 where 4 19415 / 216,(9695 /108,210] .n =    

 

Now, 1
11 95 / 8 15,t = < 3

11 935 /16 60,t = < 5
11 9695 /108 90,t = <  

2
11 1055 / 36 30a = <  and 4

11 19415 / 216 90.a = <  Hence, period 11 meets the 

requirements of round r ¢  and the dynamic converges to the attractor.  

Finally, we turn to the prediction errors for of the equilibria with respect to 

the attractor. The average prediction error of the pooling equilibrium is equal to 

285
40.7.

7
  The average prediction error of the separating equilibrium is equal 

to 
195

27.9.
7
  
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Appendix C (Online): Instructions  

We include the experimental instructions (including check questions) of the 

G(120) treatment for both the “Chooser” (Sender) and “Proposer” (Receiver) 

roles. The instructions of the G(130) and G(210) treatments are very similar. 
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Instructions Chooser 

 
INSTRUCTIONS          

  
 

Welcome to this decision-making experiment. Please read these instructions carefully. We will 
first provide you with an outline of the instructions and then we will proceed with a detailed 
description of the instructions. 

 
 

OUTLINE 
 

Experiment 
 At the start of the experiment you will receive a starting capital of 100 points. In addition, 

you can earn points with your decisions.  
 At the end of the experiment, you receive 1,5 (one-and-a-half) euro for each 100 points 

earned. 
 The experiment consists of around 50 periods. 
 Your role in the whole experiment is: CHOOSER.  
 In each period, you will be randomly paired with a different participant who performs the 

role of Proposer.  
 

Sequence of events 
 In each period, you and the Proposer will bargain over an outcome, which can be any 

number between 0 and 120. 
 Your preferred outcome is a number between 0 and 120. Any number between 0 and 120 is 

equally likely. The Proposer’s preferred outcome is always 0. 
  Each period you will receive a new (random) preferred outcome. You are the only one who 

is informed about your preferred outcome.  
 After learning your preferred outcome, you will send a SUGGESTION for a proposal 

(between 0 and 120) to the Proposer.  
 The Proposer is informed of your suggestion and makes a PROPOSAL (between 0 and 

120) for the outcome. 
 After you have been informed of the proposal, you accept or reject it. 
 At the end of a period, you are informed of the points you earned (your payoff). 

 
Payoffs 
 When you accept a proposal, your payoff is 60 minus the distance between your preferred 

outcome and the proposal. 
  The Proposer’s payoff is 60 minus 0.4 times the proposal in this case.  
 When you reject a proposal, you receive 0 points and the Proposer receives 0 points. 

 
History Overview 
When making a decision, you may use the History Overview, which provides an overview of 
the results of the other Chooser/Proposer pairs (including your own pair) in the 15 most recent 
periods. The left part of the overview is a Table with four columns SUGGESTION, PRO-
POSAL, ACCEPTANCE and PREFERRED OUTCOME. In a row, you will find a particular 
pair’s suggestion, the corresponding proposal, whether the Chooser accepted or rejected the 
proposal and the preferred outcome of that Chooser. On the right, you find a Graph where the 
most recent results are represented by blue squares. On the horizontal axis you can read the 
value of the suggestion and on the vertical axis the value of the corresponding proposal 
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DETAILED INSTRUCTIONS 

 
Now we will describe the experiment in detail. At the start of the experiment you will receive a 
starting capital of 100 points. During the experiment you will be asked to make a number of 
decisions. Your decisions and the decisions of the participants you will be paired with will 
determine how much money you earn. The experiment consists of around 50 periods. In each 
period, your earnings will be denoted in points. Your final earnings in the experiment will be 
equal to the starting capital plus the sum of your earnings in all periods. At the end of the 
experiment, your earnings in points will be transferred to money. For each 100 points you earn, 
you will receive 1,5 (one-and-a-half) euro. Your earnings will be privately paid to you in cash.  
In each period, all participants are paired in couples. One participant within a pair has the role of 
CHOOSER, the other participant performs the role of PROPOSER. In all periods you keep the 
same role.  

 
Your role is: CHOOSER.  

 
 

MATCHING PROCEDURE  
For the duration of the experiment, you will be in a fixed matching group of five Proposers and 
five Choosers (hence 10 participants in total, including yourself). In each period you are 
randomly matched to another participant in this matching group with the role of Proposer. You 
will never learn with whom you are matched.  

 
BARGAINING AND PREFERRED OUTCOMES 
In each period, you and the Proposer with whom you are coupled will bargain over an outcome. 
The Proposer’s preferred outcome is always 0. Your preferred outcome is a number between 
(and including) 0 and 120. Any number between 0 and 120 is equally likely. Each period you 
will receive a new preferred outcome that does not depend on your preferred outcome of any 
previous period. You are the only one who is informed about your preferred outcome. The 
Proposer only knows that your preferred outcome is a number between 0 and 120 (and that each 
such number is equally likely).  

 
SEQUENCE OF EVENTS IN A PERIOD  
After you have learned your preferred outcome in a period, you will send a SUGGESTION for a 
proposal to the Proposer. You may send any suggestion between (and including) 0 and 120. It is 
up to you to decide whether and how you let your suggestion depend on your preferred out-
come. Then, the Proposer with whom you are coupled is informed of your suggestion (but not of 
your preferred outcome). Subsequently, the Proposer makes a PROPOSAL for the outcome. A 
proposal is any number between (and including) 0 and 120. Finally, you will choose to accept or 
reject the proposal. 
At the end of a period, you are informed of the payoff (points you earned) that you made. This 
payoff is automatically added to your total earnings (or in case that you make a loss, it is 
subtracted from your total earnings). The Proposer is informed of the outcome, your preferred 
outcome and her or his own payoff. 

 
Please note that the experiment will only continue from one phase to another after everybody 
has pressed OK/PROCEED. For this reason, please press OK/PROCEED as soon as you have 
made your decision. 
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PAYOFFS WHEN YOU ACCEPT THE PROPOSAL 
When you accept the proposal, you will receive a payoff of 60 minus the distance between your 
preferred outcome and the proposal: 

 
Your payoff = 60 – distance(your preferred outcome and proposal).  
 
When you accept the proposal, the Proposer’s payoff is 60 minus 0.4 times the proposal: 
 
Payoff Proposer = 60 – 0.4 * proposal. 
 
It is possible to reject a proposal. 
 

PAYOFFS WHEN YOU REJECT THE PROPOSAL 
When you reject a proposal, then the outcome is the status quo. In this case, you will receive 0 
points and the Proposer will receive 0 points.  
Notice that accepting an offer gives you a higher payoff than rejecting it if and only if the 
distance between the proposal and your preferred outcome is smaller than 60. The Proposer’s 
payoff is higher when you accept than when you reject in all cases. 

 
EXAMPLE 1. Suppose your preferred outcome is 80 and you receive a proposal of 100. Then, 

the distance between your preferred outcome and proposal is 100 - 80 = 20.  
If you accept, your payoff is 60 - 20 = 40. The Proposer’s payoff in this case is 60 – 0.4*100 = 
20.  

If you reject, your payoff is 0 and the Proposer’s payoff is 0.  
 
EXAMPLE 2. Suppose your preferred outcome is 80 and you receive a proposal of 10. Then, 

the distance between your preferred outcome and the proposal is 80 - 10 = 70. 
If you accept, your payoff is 60 - 70 = -10. The Proposer’s payoff in this case is 60 – 0.4*10 

= 56. 
If you reject, your payoff is 0 and the Proposer’s payoff is 0. 
 

HISTORY OVERVIEW  
When making a decision, you may use the History Overview, which fills the lower part of the 
screen. The History Overview summarizes the results of the most recent 15 periods. (If less than 
15 periods have been completed, this history overview contains results of all completed peri-
ods.)  
Apart from your own results in the previous periods, the History Overview also contains the 
results of the other Chooser/Proposer pairs in your matching group. In total you are thus 
informed about the past results of the same matching group of five Chooser/Proposer pairs. All 
other Choosers and Proposers in your matching group will have the same information. The 
presentation of information for Proposers is different than for Choosers. 

 
TABLE 
Below you see an example of the history overview. THE NUMBERS IN THE HISTORY 
OVERVIEW DO NOT INDICATE WHAT YOU SHOULD DO IN THE EXPERIMENT. The 
left part of the history overview is a Table with four columns. The first column labelled SUG-
GESTION contains the suggestions made by the Choosers in the recent previous periods. The 
second column labelled PROPOSAL gives the proposal that was made by the Proposer as a 
response to the suggestion in the same row. The third column labelled ACCEPTANCE shows 
whether the Chooser accepted or rejected the proposal. The fourth column labelled PRE-
FERRED OUTCOME shows the preferred outcome of the Chooser. 
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The results shown in the history overview will be sorted on the basis of suggestion in ascending 
order. (The lower the suggestion, the higher the place in the table.) When the suggestion is the 
same for two or more different results, these observations will be sorted on the basis of pro-
posal, again in ascending order. In the example above, this applies to the third and the fourth 
row, where two Choosers chose the same suggestion but the corresponding Proposers chose 
different proposals. More generally, observations have been sorted first on suggestion, then on 
proposal, then on acceptance or rejection and finally on preferred outcome. 

 
 

GRAPH 
 

On the right of the history overview, the most recent results are represented in a graph. The 
horizontal axis presents the suggestion and the vertical axis presents the proposal. Each previous 
observation is represented by a blue square. On the horizontal axis you can read the value of the 
suggestion for a particular result and on the vertical axis you can read the value of the corre-
sponding proposal. (Proposers will see preferred outcomes on the vertical axis, rather than 
proposals.) 

 
EXAMPLE. Consider the square that is displayed in the lower left corner of the Graph shown 

above. Here, the Chooser made a suggestion of 30. The Proposer responded with a proposal of 
10. 

  
You have now reached the end of the instructions. The next page contains some questions 
concerning the experiment. When all participants have answered all questions correctly, we will 
proceed with the experiment. 
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QUESTIONS 
 

Please answer the following questions. THE VALUES USED IN SOME QUESTIONS DO 
NOT INDICATE WHAT YOU SHOULD DO IN THE EXPERIMENT. RATHER, THEY 
HAVE BEEN CHOSEN TO FACILITATE CALCULATIONS. 

 
1. Is the following statement correct? ‘In each period I am coupled with the same Proposer.’ 

 
2. Is the following statement correct? ‘My preferred position will be observed by the Proposer 
before (s)he makes her or his proposal.’ 

 
3. 
(A) What is the highest value your preferred outcome can take on? 
(B) What is the highest value a suggestion of yours can take on? 
(C) What is the highest value a proposal can take on? 

 
4. Consider a period in which your preferred outcome is 50. You chose to send a suggestion of 
40. The Proposer made a proposal of 20, which was accepted by you. 
(A) What are your own earnings in this period? 
(B) How much does the Proposer to whom you are paired earn? 

 
5. Consider a period in which your preferred outcome is 90. You chose to send a suggestion of 
100. The Proposer made a proposal of 0, which was accepted by you. 
(A) What are your own earnings in this period? 
(B) How much does the Proposer to whom you are paired earn? 

 
6. Consider a period in which your preferred outcome is 30. You chose to send a suggestion of 
40. The Proposer made a proposal of 10, which was rejected by you. 
(A) What are your own earnings in this period? 
(B) How much does the Proposer to whom you are paired earn? 

 
 
When you are ready answering the questions, please raise your hand.  
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Instructions Proposer 

INSTRUCTIONS           
  
Welcome to this decision-making experiment. Please read these instructions carefully. We will 
first provide you with an outline of the instructions and then we will proceed with a detailed 
description of the instructions. 

 
 

OUTLINE 
 

Experiment 
 At the start of the experiment you will receive a starting capital of 100 points. In addition, 

you can earn points with your decisions.  
 At the end of the experiment, you receive 1,5 (one-and-a-half) euro for each 100 points 

earned. 
 The experiment consists of around 50 periods. 
 Your role in the whole experiment is: PROPOSER.  
 In each period, you will be randomly paired with a different participant who performs the 

role of Chooser.  
 

Sequence of events 
 In each period, you and the Chooser will bargain over an outcome, which can be any 

number between 0 and 120. 
 Your preferred outcome is always 0.  
 The Chooser’s preferred outcome is a number between 0 and 120. Any number between 0 

and 120 is equally likely.  
 Each period, each Chooser will receive a new (random) preferred outcome. The Chooser 

is the only one who is informed about her or his preferred outcome.  
 After learning her or his preferred outcome, the Chooser with whom you are matched will 

send a SUGGESTION for a proposal (between 0 and 120) to you.  
 You are informed of the Chooser’s suggestion and make a PROPOSAL (between 0 and 

120) for the outcome. 
 After the Chooser has been informed of the proposal, she or he accepts or rejects it. 
 At the end of a period, you are informed of the points you earned (your payoff). 
 
Payoffs 
 When the Chooser accepts your proposal, your payoff is 60 minus 0.4 times the proposal.  
 The Chooser’s payoff is in this case 60 minus the distance between her or his preferred 

outcome and the proposal. 
 When the Chooser rejects your proposal, you receive 0 points and the Chooser 0 points. 

 
History Overview 
When making a decision, you may use the History Overview, which provides an overview of 
the results of five Chooser/Proposer pairs (including your own pair) in the 15 most recent 
periods. The left part of the overview is a Table with four columns SUGGESTION, PRE-
FERRED OUTCOME, PROPOSAL and ACCEPTANCE. In a row, you will find a particular 
pair’s suggestion, the preferred outcome of the Chooser, the proposal made by the Proposer and 
whether the Chooser accepted or rejected the proposal. On the right, you find a Graph where the 
most recent results are represented by blue squares. On the horizontal axis you can read the 
value of the suggestion and on the vertical axis the value of the corresponding preferred out-
come of the Chooser. 
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DETAILED INSTRUCTIONS 

 
Now we will describe the experiment in detail. At the start of the experiment you will receive a 
starting capital of 100 points. During the experiment you will be asked to make a number of 
decisions. Your decisions and the decisions of the participants you will be paired with will 
determine how much money you earn. The experiment consists of around 50 periods. In each 
period, your earnings will be denoted in points. Your final earnings in the experiment will be 
equal to the starting capital plus the sum of your earnings in all periods. At the end of the 
experiment, your earnings in points will be transferred to money. For each 100 points you earn, 
you will receive 1,5 (one-and-a-half) euro. Your earnings will be privately paid to you in cash.  
In each period, all participants are paired in couples. One participant within a pair has the role of 
CHOOSER, the other participant performs the role of PROPOSER. In all periods you keep the 
same role. 

 
Your role is: PROPOSER.  
 

MATCHING PROCEDURE  
For the duration of the experiment, you will be in a fixed matching group of five Proposers and 
five Choosers (hence 10 participants in total, including yourself). In each period you are 
randomly matched to another participant with the role of Chooser. You will never learn with 
whom you are matched.  

 
BARGAINING AND PREFERRED OUTCOMES 
In each period, you and the Chooser with whom you are coupled will bargain over an outcome. 
Your preferred outcome is always 0. The Chooser’s preferred outcome is a number between 
(and including) 0 and 120. Any number between 0 and 120 is equally likely. Each period, each 
Chooser will receive a new preferred outcome that does not depend on a preferred outcome of 
any previous period. The Chooser is the only one who is informed about her or his preferred 
outcome. You only know that the Chooser’s preferred outcome is a number between 0 and 120 
(and that each such number is equally likely). 
 
SEQUENCE OF EVENTS IN A PERIOD  
After the Chooser with whom you are matched has learned her or his preferred outcome in a 
period, she or he will send a SUGGESTION for a proposal to you. The Chooser may send any 
suggestion between (and including) 0 and 120. It is up to the Chooser to decide whether and 
how she or he lets her or his suggestion depend on her or his preferred outcome. Then, you are 
informed of the Chooser’s suggestion (but not of her or his preferred outcome). Subsequently, 
you make a PROPOSAL for the outcome. A proposal is any number between (and including) 0 
and 120. Finally, the Chooser will choose to accept or reject the proposal. 
At the end of a period, you are informed of the outcome of the period and the preferred outcome 
of the Chooser you were paired with. Finally, you are informed of the payoff (points you 
earned) that you made. This payoff is automatically added to your total earnings (or in case that 
you make a loss, it is subtracted from your total earnings).  

 
Please note that the experiment will only continue from one phase to another after everybody 
has pressed OK/PROCEED. For this reason, please press OK/PROCEED as soon as you have 
made your decision. 
 
PAYOFFS WHEN THE CHOOSER ACCEPTS THE PROPOSAL 
When the Chooser accepts your proposal, your payoff is 60  minus 0.4 times the proposal: 

 
Your payoff = 60 – 0.4 * proposal. 
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When the Chooser accepts your proposal, the Chooser will receive a payoff of 60 minus the 
distance between her or his preferred outcome and the proposal: 

 
Payoff Chooser = 60 – distance(her or his preferred outcome and proposal).  
 

It is possible for a Chooser to reject a proposal. 
 
PAYOFFS WHEN THE CHOOSER REJECTS THE PROPOSAL 
When the Chooser rejects a proposal, then the outcome is the status quo. In this case, you will 
receive 0 points and the Chooser will receive 0 points.  

 
Notice that accepting an offer gives the Chooser a higher payoff than rejecting it if and only if 
the distance between the proposal and her preferred outcome is smaller than 60. Your payoff is 
higher when the Chooser accepts than when she or he rejects in all cases. 

 
EXAMPLE 1. Suppose the Chooser’s preferred outcome turns out to be 80 (which you can-

not know) and you make a proposal of 100. Then, the distance between her preferred outcome 
and your proposal is 100 - 80 = 20.  
If the Chooser accepts, your payoff is 60 – 0.4*100 = 20. The Chooser’s payoff in this case is 60 
- 20 = 40.  
If the Chooser rejects, your payoff is 0 and the Chooser’s payoff is 0.  

 
EXAMPLE 2. Suppose the Chooser’s preferred outcome turns out to be 80 and you make a 

proposal of 10. Then, the distance between her preferred outcome and your proposal is 80 - 10 = 
70. 
If the Chooser accepts, your payoff is 60 – 0.4*10 = 56. The Chooser’s payoff in this case is 60 
- 70 = -10.  
If the Chooser rejects, your payoff is 0 and the Chooser’s payoff is 0.  

 
HISTORY OVERVIEW  
When making a decision, you may use the History Overview, which fills the lower part of the 
screen. The History Overview summarizes the results of the most recent 15 periods. (If less than 
15 periods have been completed, this history overview contains results of all completed peri-
ods.)  
Apart from your own results in the previous periods, the history overview also contains the 
results of the other Chooser/Proposer pairs in your matching group. In total you are thus 
informed about the past results of the same group of five Chooser/Proposer pairs. All Choosers 
and Proposers in your matching group will have the same information. The presentation of 
information is different for Choosers than for Proposers.  

 
TABLE 
Below you see an example of the history overview. THE NUMBERS IN THE HISTORY 
OVERVIEW DO NOT INDICATE WHAT YOU SHOULD DO IN THE EXPERIMENT. The 
left part of the history overview is a Table with four columns. The first column labelled SUG-
GESTION contains the suggestions made by the Choosers in the recent previous periods. The 
second column labelled PREFERRED OUTCOME shows the preferred outcome of the Choos-
er. The third column labelled PROPOSAL gives the proposal that was made by the Proposer as 
a response to the suggestion in the same row. The fourth column labelled ACCEPTANCE shows 
whether the Chooser accepted or rejected the proposal.  
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The results shown in the history overview will be sorted on the basis of suggestion in ascending 
order. (The lower the suggestion, the higher the place in the table.) When the suggestion is the 
same for two or more different results, these observations will be sorted on the basis of pre-
ferred outcome, again in ascending order. In the example above, this applies to the third and the 
fourth row, where two Choosers chose the same suggestion but had different preferred out-
comes. More generally, observations have been sorted first on suggestion, then on preferred 
outcome, then on proposal and finally on acceptance or rejection. 

 
GRAPH 
On the right of the history overview, the most recent results are represented in a graph. The 
horizontal axis presents the suggestion and the vertical axis presents the proposal. Each previous 
observation is represented by a square. On the horizontal axis you can read the value of the 
suggestion for a particular result and on the vertical axis you can read the value of the corre-
sponding proposal. If the square is green, the particular proposal was accepted and if the square 
is red with white inside, the particular proposal was rejected. (Choosers will see proposals on 
the vertical axis.) 

 
EXAMPLE 1. Consider the square that is displayed in the lower left corner of the Graph 

shown above. Here, the Chooser made a suggestion of 20. This Chooser’s preferred outcome 
was 30. 

  
You have now reached the end of the instructions. The next page contains some questions 

concerning the experiment. When all participants have answered all questions correctly, we will 
proceed with the experiment. 
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QUESTIONS 
 

Please answer the following questions. THE VALUES USED IN SOME QUESTIONS DO 
NOT INDICATE WHAT YOU SHOULD DO IN THE EXPERIMENT. RATHER, THEY 
HAVE BEEN CHOSEN TO FACILITATE CALCULATIONS. 

 
1. Is the following statement correct? ‘In each period I am coupled with the same Chooser.’ 

 
2. Is the following statement correct? ‘I will observe the Chooser’s preferred position before I 
make my proposal.’ 

 
3. 
(A) What is the highest value the preferred outcome of a Chooser can take on? 
(B) What is the highest value a suggestion of a Chooser can take on? 
(C) What is the highest value a proposal of yours can take on? 

 
4. Consider a period in which the Chooser’s preferred outcome is 50. The Chooser chose to send 
a suggestion of 40. You made a proposal of 20, which was accepted by the Chooser. 
(A) What are your own earnings in this period? 
(B) How much does the Chooser to whom you are paired earn? 

 
5. Consider a period in which the Chooser’s preferred outcome is 90. The Chooser chose to send 
a suggestion of 100. You made a proposal of 0, which was accepted by the Chooser. 
(A) What are your own earnings in this period? 
(B) How much does the Chooser to whom you are paired earn? 

 
6. Consider a period in which the Chooser’s preferred outcome is 30. The Chooser chose to send 
a suggestion of 40. You made a proposal of 10, which was rejected by the Chooser. 
(A) What are your own earnings in this period? 
(B) How much does the Chooser to whom you are paired earn? 

 
When you are ready answering the questions, please raise your hand. 

 


