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We introduce noise in the signaling technology of an otherwise standard wasteful signaling
model (Spence, 1973). We theoretically derive the properties of the equilibria under
different levels of noise and we experimentally test how behavior changes with noise.
We obtain three main insights. First, if the amount of noise increases, high types aiming
for separation (must) increase their signaling expenditures. This theoretical prediction
is confirmed in our experiment. Second, for intermediate and high levels of noise,
a separating and pooling equilibrium co-exist. In the experiment, subjects tend to shift
from coordinating on a separating outcome to a pooling one as noise increases. Third,
a surprising theoretical insight is that a separating equilibrium ceases to exist for low levels
of noise (and an unfavorable prior). Yet in the experiment subjects then do coordinate on
separation. A simple attraction learning model incorporating belief learning, imitation and
reinforcement, explains this stable non-equilibrium behavior.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

An important insight already dating back to Veblen (1899) is that people may be willing to invest in wasteful activities
to get some of their unobserved qualities recognized. He argued that the nineteen century ‘nouveau riche’ heavily invested
in wasteful, highly visible ways of (‘conspicuous’) consumption to openly display their wealth. These lavish expenditures
served no other function than to signal social status. In a seminal contribution, Spence (1973) formalized this idea by
providing the first game theoretic analysis of a signaling game in which a job applicant’s investment in education is seen
as a costly signal of his unobservable ability type. In this model, education does not improve productivity at all, but allows
higher ability types to separate from lower ability types because obtaining education is less costly for them. The observed
expenditures on education can thus effectively serve as convincing evidence of unobserved ability. Since then, the Spence
model has become one of the most important tools in modern economics and beyond.

Given its central place, it is important to know to what extent the conclusions from Spence’s wasteful signaling model
are robust. A particularly relevant question is whether the results remain valid when noise is introduced in the signaling
technology, such that the signal effectively received is not identical to the signal chosen or intended. In that case, unlike in
the Spence setup, the sender has no perfect control over the signal the receiver actually observes.1 In Spence’s education
application, the signal production technology is inherently noisy, because the exams that make up a particular degree will
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1 Another issue that already caught the attention of Spence concerns the assumed perfect negative correlation between signaling costs and type; higher
productivity types always have lower costs of choosing a given level of education than lower types have. This allows that (in market equilibrium) education
becomes a perfect point prediction of productivity. As Spence (1974, Chapter 6) shows, however, similar conclusions are obtained when this assumption is
relaxed. As long as there is a negative correlation between costs of signaling and type, education is an effective (though imperfect) signal of productivity.
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not always be equally difficult over the many occasions they are taken. Alternatively, there is a possibility that the job
applicant accidentally underperforms at the exam, perhaps because he is bothered by a flu. For these reasons, it is very
hard for receivers to precisely judge the actual (costs of the) signal received. In another prominent application, the receiver
is not able to exactly identify the cost of a signal. Consider the case of advertising as a costly signal to potential consumers.
If consumers infer the quality of a firm’s product from its expenditure on advertising, high-quality firms have an incentive
to distinguish themselves from low-quality sellers by spending money on otherwise useless advertising (Nelson 1970, 1974;
Kihlstrom and Riordan, 1984; Milgrom and Roberts, 1986). This may explain why firms are willing to spend huge amounts,
like for example the 3 million dollars firms paid on average for broadcasting a 30-second spot during the 2010 Super Bowl.2

For TV watchers at the time it may have been very hard to precisely judge the actual costs of the signal, because the typical
football fan is unaware of the precise amounts of money involved. Most of them will only have an imprecise notion that
the costs must have been high.

In fact, the assumption that there is no noise at all in the signal seems to be too strong in most real world applications.
In this paper we therefore investigate both theoretically and experimentally what happens when the assumption of no noise
is dropped. Our results show that a noisy signaling game differs profoundly from a standard signaling game without noise,
both in terms of theoretical predictions and in terms of experimental outcomes.

Like Spence (1973), we focus on a pure signaling game in which signaling is in itself entirely wasteful. In our game,
a seller offers a product for sale that is either of high quality or of low quality. Nature first determines the quality of his
product. Only the seller learns the actual quality. Then the seller chooses his level of signal costs, i.e. we equate the message
he chooses with its costs. To these signal costs nature adds a random noise term. The buyer observes the resulting overall
signal, but not the original signal costs, and decides whether or not to buy. Preferences are such that the buyer prefers to
buy if and only if quality is high. Moreover, a sale is more valuable to a high-quality seller than to a low-quality seller. In
this game signaling is completely wasteful, because both seller types would prefer to pool on zero signal costs if the buyer
would ignore the seller’s signal.

Intuitively one would a priori expect that, the higher the amount of noise, the greater pains high-quality types have to
take to get their unobserved quality recognized. With more noise they will thus probably try harder to separate themselves
by choosing higher levels of signal costs. At the same time high-quality types may be less inclined to separate when the
noise in the signal becomes large, because noise makes signaling both more expensive and less informative. The latter holds
because in the presence of noise, the actual signal the receiver observes does not provide conclusive evidence about the
sender’s type and the high-quality sender faces the risk of a ‘bad’ draw and thus being considered a low-quality type. The
observation that separation becomes relatively less attractive when the noise in the signal increases suggests that noise
works in favor of pooling. Overall, intuition seems to suggest that the introduction of noise first induces high-quality sellers
to choose higher levels of signal costs, but when the noise becomes too large these sender types will stop aiming for
separation and will pool with the low-quality sellers instead.

Our theoretical analysis shows that these common sense intuitions are only partly in line with equilibrium predictions.
It indeed holds true that the level of signal costs the high-quality seller chooses in a separating equilibrium increases
with noise over a wide range of noise levels. High levels of noise thus force high-quality sellers to choose high signal
costs, just as in the advertisement example mentioned above.3 It is also the case that a separating equilibrium ceases to
exist when the noise becomes large, while irrespective of the noise level, a pooling (on no signaling) equilibrium always
exists. High-quality types will thus stop aiming for separation for high noise levels. Surprisingly, however, a (pure strategy)
separating equilibrium also does not exist when just a small amount of noise is introduced.4 The intuition behind this
a priori somewhat counterintuitive result runs as follows. In a separating equilibrium, the buyer buys if and only if she
receives a signal higher than a cutoff. With a low level of noise, this cutoff is much lower than the one used in the case
without noise. It therefore becomes attractive for the low-quality seller to jump from providing zero signal costs to his
interior optimum. This undermines the logic of the separating equilibrium in which the low-quality seller should refrain
from signaling.

The theoretical prediction that just a little bit of noise thwarts all attempts to invest in wasteful signaling activities
challenges the robustness of the conclusions obtained from Spence’s original (1973) contribution. It therefore becomes
important to test this prediction empirically. Moreover, the existence of multiple equilibria is another reason why data are

2 See http://www.bnet.com/blog/advertising-business/rise-in-super-bowl-ad-prices-threatens-raw-deal-for-advertisers/4222. These costs came on top of
the costs of producing the commercial, like fees for actors, equipment and advertisement agencies.

3 Another example of high signaling costs is provided by the Yanomamö, a contemporary tribe of about twenty thousand Indians living in the Amazon
rainforest on the border between Brazil and Venezuela. Yanomamö men sometimes risk their lives in their vigorous pursuit of a fierce image (Chagnon,
1992). Disputes about women occasionally culminate in a club fight, where two males take turns striking each other on the head with a club of eight to
ten feet long. The men are very proud of their heads that are covered with deep scars. Some men have a tonsure shaved on the top of their heads and they
rub red pigment on their scars to make sure that nobody misses them. Regularly, people get killed in club fights or other outbursts of violence. Having a
fierce image pays off among the Yanomamö. Chagnon (1988) reports that men who killed had on average two and half times as many wives and three
times as many children than men who did not. Note that in this example, the production technology of the signal is noisy, because e.g. the deepness of a
scar may be affected by incidental factors such as the angle in which the club hit the head.

4 This theoretical result only applies in the case of an unfavorable prior, where the prior belief about quality is not sufficient to support a sale. In the
experiment we focus on this more interesting case where information transmission is necessary to realize the efficiency gains from trade. In our theoretical
analysis we consider the opposite case of a favorable prior as well.
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important. Even when a separating equilibrium exists besides a pooling one, it is a priori unclear whether and when people
will actually coordinate on a separating outcome. The actual impact of noise on signaling thus remain a priori uncertain.
Field data of signaling games lack the control needed to investigate the effect of noise on signaling empirically. Ideally, one
investigates actual signaling in games that only differ in the amount of noise in the signaling technology and are isomorphic
in all other dimensions. This level of control can only be acquired in a laboratory experiment. We therefore test the noisy
wasteful signaling model in the lab.

In our experimental design we vary the level of noise between our four treatments: from no noise to low noise (without
a separating equilibrium) to intermediate noise (with a unique separating equilibrium based on an intermediate level of
signal costs) to high noise (with a unique separating equilibrium based on a high level of signal costs). Our design allows
us to address three main questions: (i) Do the signal costs chosen by those high-quality sellers that aim for separation
increase with the level of noise? (ii) Are high-quality sellers less inclined to separate when the noise becomes high? and
(iii) Do subjects refrain from separating for a low noise level that prevents separation in theory? For the treatments where
a pooling and a separating equilibrium coexist, we also investigate the effect of noise on the proximity of actual play to
either equilibrium.

We obtain the following experimental results. For no, low, and intermediate noise, subjects tend to separate. For high
levels of noise some matching groups still play according to the logic of a separating equilibrium, but the majority switches
to pooling on no signal costs. Conditional on aiming for separation, high-quality sellers’ signal costs increase monotonically
with the noise in the signal. Very high signal costs are occasionally observed when the noise in the signal is large.

We explain our data with an attraction learning model that allows a mixture of belief learning (best response), imitation
and reinforcement. Based on this model the anomaly that subjects separate in the low noise treatment where according to
theory separation cannot be supported in equilibrium, can be intuitively understood as follows. With only a low amount of
noise buyers initially behave as if there is no noise and thus use a higher cutoff than prescribed by equilibrium play. It is
then in the interest of the sellers to choose separating signal costs. Buyers feel no pressure to change their disequilibrium
behavior, because the noise in the signal smoothes their expected payoffs and their actual choices are not noticeably worse
than their best responses. Therefore, separation does not unravel and Spence’s original result is “saved” for behavioral
reasons. Simulations based on the estimated learning model suggest that separation for low noise would also have resulted
if subjects had initially played much closer to the pooling equilibrium than they actually did. In addition, the simulations
indicate that the separating result is not due to the limited number of periods in the experiment. Interestingly, stable non-
equilibrium results like ours also appear in other signaling games. For instance, Cai and Wang (2006) and Wang et al. (2010)
find that senders consistently overcommunicate compared to the most informative equilibrium in cheap-talk games.

Although a large literature on signaling games exists, noisy signaling has received little attention up till now. The path-
breaking paper here is by Matthews and Mirman (1983), who include noisy signals in a (signaling) model of limit pricing.
Within this context they show that the introduction of noise has substantial implications for the equilibrium predictions.
Another important contribution is by Carlsson and Dasgupta (1997), who propose using vanishing noise as an equilibrium
selection device in signaling games without noise. We consider the effect of noise in Spence’s original pure signaling model
in which signaling constitutes a pure social waste. In this noisy signaling game separating and pooling equilibria coexist, in
contrast to the noisy signaling games of Matthews and Mirman, and Carlsson and Dasgupta that only allow for separating
equilibria. An important result is that only in the setup of Spence the existence of a separating equilibrium depends on the
amount of (non-vanishing) noise in the signal. We are therefore able to study an issue that these earlier papers did not
address, viz. how the occurrence of different types of equilibria (i.e. separating vs. pooling) varies with the level of noise. In
the next section we will elaborate further on the distinctive features of our theoretical analysis.

Previous experimental papers on signaling have searched for empirical equilibrium selection devices (in a noise-free
context). Miller and Plott (1985) investigated signaling in a rich market institution, where sellers chose prices as well as
costly quality increments to the product. In markets where the signaling costs were relatively low, market outcomes tended
to converge to the separating equilibrium. Usually, high-quality sellers started with inefficiently high signaling costs before
they converged to the minimum level that distinguished them from the low-quality types. Brandts and Holt (1992) studied
the predictive power of belief-based refinements in a game that modeled workers’ choices for education and employers’
subsequent hiring decisions. In early sessions, they found that play converged to the intuitive pooling equilibrium. Having
studied the dynamics in the sessions, they were able to alter the parameters such that play tended to converge to the
unintuitive pooling equilibrium. Cooper et al. (1997a, 1997b) investigated a limit pricing game where low-cost monopolists
had incentives to deter entry by high-cost monopolists. Subjects started at their “myopic optima”, which allowed entrants
to infer the monopolist’s actual type and to act accordingly. This encouraged high-type monopolists to pool with the low-
cost types. If no pooling equilibrium existed, initial attempts at pooling were shattered and play converged to a separating
equilibrium. None of these papers considered the possibility that noise in the signaling technology might profoundly affect
how people play signaling games.5

5 There are, however, experimental papers that investigated noisy communication in other games. Güth et al. (2006) investigate the effects of noisy
leadership in a sequential duopoly game. Aoyagi and Fréchette (2009) study collusion in a repeated prisoners’ dilemma game where the opponent’s past
actions are imperfectly revealed in a noisy public signal. Feltovich et al. (2002) consider a signaling game experiment in which the receiver (in contrast to
our setup) does perfectly observe the message chosen by the sender, but also receives some exogenous noisy information.
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Table 1
Payoffs of seller and buyer over action–state pairs.

Seller is of bad type (1 − p) Seller is of good type (p)

Buy b − m,−y g − m, x
Refrain −m,0 −m,0

Remarks: The first (second) number in each cell refers to the seller’s (buyer’s) payoffs. g > b > 0 and x, y > 0 are
parameters of the model. m � 0 denotes the signal costs chosen by the seller.

Jeitschko and Normann (2009) also conduct experiments on noisy signaling games. Unlike us, their setup closely follows
the one of Carlsson and Dasgupta (1997) (and Matthews and Mirman, 1983) where signaling is not entirely wasteful. In
their setup, only separating equilibria exist (for all levels of noise) and the issue of how subjects’ inclination to separate
varies with different levels of noise is void. Instead, their main focus is on how prior beliefs affect play in both noisy and
deterministic games.

The remainder of our paper is organized in the following way. Section 2 provides a detailed description of the game and
the theoretical analysis. Section 3 describes the experimental design and procedures. Section 4 presents the experimental
results and Section 5 concludes.

2. Theory

2.1. The noisy signaling game

We consider a simple signaling game between an informed seller and an uninformed buyer. The seller can be of two
types, either good or bad; p ≡ Pr(good), with 0 < p < 1, denotes the buyer’s prior belief that the seller is of the good type.
The seller first chooses his message m ∈ [0,∞) at signal costs m. The buyer then observes a noisy signal z ∈ R, i.e. we
assume that she observes m with some additive noise:

z = m + σ · ε.

Here ε is a random variable with distribution function F : R → [0,1] and σ � 0 reflects a scaling parameter to account for
changes in the amount of noise. In line with Matthews and Mirman (1983) and Carlsson and Dasgupta (1997), we assume
that the density f is continuous and strictly positive everywhere. Moreover, like them we also assume that the conditional
density of z given m satisfies the strict monotone likelihood ratio property (MLRP).6 Intuitively, this means that higher signal
costs m become more likely when the observed signal z increases.

Having observed signal z, the buyer decides whether to buy or refrain from buying the product. The latter yields her 0,
irrespective of the seller’s type. If the buyer decides to buy she obtains a payoff equal to x > 0 when the seller is of the
good type and −y < 0 when he is of the bad type. The seller always bears the signal costs of his message choice m. Apart
from that, the good (bad) type seller obtains a gross payoff of g (b) from a sale. We assume that g > b > 0, i.e. the sorting
condition is satisfied. Table 1 summarizes these payoffs. Both seller and buyer are assumed to be risk-neutral.

Note that our setup is isomorphic to the original one of Spence (1973) when we divide the seller’s payoffs by his type
t ∈ {b, g}; i.e. the seller obtains 1 − m

t when the buyer buys and −m
t if she does not. In this alternative specification the

two seller types do not differ in their benefits of a sale, but rather in their (marginal) costs of producing message m (which
corresponds to the level of education in Spence’s original formulation). Because this is just a normalization, equilibrium
predictions are exactly the same.

2.2. Equilibrium analysis

From Spence (1973) it is well known that without noise (σ = 0) there are many Perfect Bayesian equilibria. Among these
are pooling equilibria in which both seller types choose m = 0 and separating equilibria in which the bad type chooses m = 0
and the good type chooses some level of signal costs mg ∈ [b, g]. All these equilibria exist independent of prior belief p.
Moreover, when the buyer would buy in the absence of additional information – i.e., p > β∗ ≡ y

x+y – also pooling on any
m ∈ (0,b] can be supported as equilibrium.

Introducing noise by letting σ > 0 narrows down the equilibrium set considerably. First, pooling on some m > 0 cannot
occur any longer. If both seller types choose the same signal costs m, then the buyer’s posterior belief necessarily equals

6 These assumptions facilitate the equilibrium analysis, because they imply that the buyer necessarily uses a cutoff strategy in any non-pooling equilib-
rium (cf. Appendix A). The important assumption here is that each possible signal comes from each type with strictly positive probability. As long as this
assumption remains fulfilled, the analysis may be generalized to the case where signals have bounded support. In applications where negative signals are
problematic, one may then choose to normalize the game such that only positive signals are possible. Alternatively, negative signals may be natural in ap-
plications where the costs are not exclusively monetary. As Spence (1973, p. 359) already noticed: “Signaling costs are to be interpreted broadly to include
psychic and other costs . . . ”. Negative signals are also less problematic when one takes the seller’s consumption good value of signaling into account: “The
signal cost function does, in principle, capture education as a consumption good, an effect that simply reduces the cost of education” (cf. Spence, 1973,
p. 364).
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her prior for any signal z observed. Her buying decision is then fully determined by her prior belief and independent of the
signal received. Given this, the seller lacks any incentive to (stochastically) increase the signal and therefore only pooling on
m = 0 can occur. Second, adding noise also severely restricts the set of separating equilibria. We illustrate this by focusing
on the case considered in the experiment where F equals the standard normal distribution N(0,1) (which will be denoted
by Φ). In Appendix A we show that all the results discussed here generalize to any distribution function F that satisfies the
assumptions made in the previous subsection. Proofs of propositions are relegated to this appendix as well.

We first consider pure strategy equilibria before we deal with mixed strategy equilibria. Proposition 1 below characterizes
the set of separating equilibria that may (but not necessarily do) exist besides pooling on m = 0.

Proposition 1. Let F = Φ and assume that players are restricted to use pure strategies. (i) A pooling equilibrium in which both seller
types choose m = 0 always exists. In this equilibrium the buyer never [always] buys when p < [>]β∗ ≡ y

x+y . Pooling on some m > 0

cannot occur. (ii) Generically, i.e. for all p �= β∗·g
(1−β∗)·b+β∗·g , it holds that in any separating equilibrium the bad type of seller chooses

m = 0 whereas the good type chooses some positive level of signal costs m = mg > 0. The buyer buys if z > z∗ and refrains from buying
otherwise. Signal costs mg and cutoff signal z∗ are given by:

mg = z∗ +
√

2σ 2 ·
[

ln

(
g

σ
√

2π

)]
(1)

z∗ = z∗
h ≡

√
2σ 2 ·

[
ln

(
g

σ
√

2π

)
− ln

(
p(1 − β∗)
(1 − p)β∗

)]
if p � β∗ (2)

z∗ = z∗
h or z∗ = z∗

l ≡ −z∗
h if p > β∗ (3)

Note that Proposition 1 only characterizes the set of pure strategy equilibria. Conditions under which the separating
equilibria indeed do exist will be discussed shortly.

The intuition behind the separating equilibria of Proposition 1 is as follows. Given that the noise distribution satisfies
MLRP, the buyer necessarily uses a cutoff strategy; the seller’s product is bought if and only if a signal larger than some
cutoff level z∗ is observed. For a given value of z∗ , the equilibrium level of signal costs mg the good type seller chooses
then follows from equalizing the marginal benefits of raising m with the marginal costs (equal to one) of doing so. This
yields expression (1).7 The exact value of cutoff z∗ subsequently follows from the requirement that the buyer’s posterior
belief after observing z∗ should make her indifferent between buying or not. Because posterior beliefs are determined by
Bayes’ rule everywhere, this requirement puts some strong characterizing restrictions on the player’s equilibrium strategies.
Expressions (2) and (3) follow from these. As the latter expression makes clear, for p > β∗ there are two solutions for z∗ ,
so actually two separating equilibria may potentially exist side by side.

Our next proposition concerns the actual existence of a separating equilibrium. In this regard we are particularly inter-
ested in how the amount of noise – as reflected by parameter σ – affects existence.

Proposition 2. Let F = Φ and assume that players are restricted to use pure strategies. A necessary condition for a separating equilib-
rium to exist is that σ � g√

2π
· min{ (1−p)β∗

p(1−β∗)
,1} ≡ σ . Assuming σ � σ , it holds that:

(i) p � β∗: a separating equilibrium does not exist if σ becomes sufficiently small;
(ii) β∗ < p <

β∗·g
(1−β∗)·b+β∗·g : a separating equilibrium always exists. For this equilibrium it holds that limσ↓0 mg = 0;

(iii) p >
β∗·g

(1−β∗)·b+β∗·g : a separating equilibrium does not exist.

Two main observations follow from Proposition 2. First, when there is a lot of noise separation cannot occur; for σ > σ
separating simply becomes too difficult or too costly for the good type seller. Formally this can be understood from expres-
sions (1) and (2). The terms within square brackets become negative for σ sufficiently large and no sensible solutions for
mg and z∗ exist.

Second, a separating equilibrium also fails to exist when only a small amount of noise is introduced in the unfavorable
prior case p � β∗ . A priori the buyer then refrains from buying, but observing a small positive signal would already induce
her to change her mind. (Formally, cutoff z∗

h as given by (2) is low when σ is small.) But given that the buyer is persuaded
so easily, the bad type seller may want to deviate from m = 0. Similar to (1) above, his best candidate deviation level equals:

mb = z∗ +
√

2σ 2 ·
[

ln

(
b

σ
√

2π

)]
(4)

7 In fact, this expression incorporates the second order condition as well; from the SOC it follows that mg necessarily exceeds z∗.
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Table 2
Overview of separating equilibria.

Amount of noise σ

� 20 25 40 75 100 120 140 � 145

z∗
h – 53.14 75.66 114.26 132.12 141.02 145 –

mg – 101.28 142.21 206.43 228.80 231.62 216.63 –

Remarks: This table is based on the parameter values used in the experiment: p = 0.5, g = 400, b = 90, x = 300 and y = 450 (so β∗ = 0.6). In the
experiment we only consider four different values of σ , viz. 0, 10, 40 and 120. A dash implies that a separating equilibrium does not exist.

One requirement for a separating equilibrium to exist is thus that m = mb should yield the bad type seller weakly less than
m = 0. This reduces to8:

b ·
(

Φ

(
z∗

σ

)
− Φ

(
z∗ − mb

σ

))
� mb (5)

Because this condition depends on Φ, no closed form expression for the cutoff value on σ can be obtained. But it can be
shown that it is necessarily violated for σ small enough.9

The prediction that just a small amount of noise destroys separation is a priori somewhat counter-intuitive. To better
understand the underlying driving force, let the payoff parameters be such as in the experiment (where p = 0.5 < 0.6 = β∗ ,
see Table 2) and consider first the least cost separating equilibrium of the no noise game. In this so-called Riley outcome
the bad type seller chooses m = 0 and the good type m = 90 (= b). The buyer buys only if a signal of z = 90 or higher is
observed. Fig. 1(a) reflects both the densities of the signals generated by the two seller types (labeled f B and fG ) and the
buyer’s posterior belief β(z). The signal densities are degenerate at z = 0 and z = 90, respectively. This implies that β(z)
is determined by Bayes’ rule only for these two values of z. To support the equilibrium, out-of-equilibrium beliefs must be
such that β(z) � β∗ for z < 90. The figure depicts the equilibrium where β(z) = 0 in that case. Importantly, for any signal
between 0 and 90 the buyer may hold skeptical beliefs that the signal quite likely came from the bad type seller, even
when it is close to 90.

Now consider what happens if some noise is added, of size σ = 10 say. Naively one would then expect that the good
type seller simply moves up his signal cost a bit, to 100 say, while the bad type stays put. Fig. 1(b) depicts this situation.
In contrast to the no noise case, the two signal densities are now non-degenerate and posterior beliefs β(z) for in between
signals 0 < z < 100 now follow from Bayes’ rule. Given the highly concentrated signal densities, signals closest to 0 most
likely come from the bad type while signals closest to 100 most likely come from the good type. The actual cutoff for which
β(z∗) = β∗ is roughly in the middle at z∗ ≈ 50.4. But if the buyer uses this cutoff value, the bad type seller wants to jump
away from m = 0 towards mb ≈ 66.4 (cf. expression (4)). This destroys the separation outcome. Another destabilizing factor
is that for z∗ ≈ 50.4 the good type seller also wants to deviate from 100 to mg ≈ 73.9.

From the above it follows that crucial for separation to unravel when some noise is introduced, is that the buyer realizes
that she should set a (much) lower cutoff level above which she decides to buy. If she does not do so and keeps the cutoff
at z∗ = 90 (or somewhat higher), the two seller types still have an incentive to separate.

The overall comparative statics in σ are illustrated in Table 2. For σ roughly below 24 separation cannot occur. The same
holds for high amounts of noise (viz. σ roughly above 142) whereas for in between levels a separating equilibrium exists
besides the pooling one.10 In these separating equilibria the level of signal costs chosen by the good type increases with
noise (for σ not too high). This level mg can actually become quite large relative to g and b, as the case with σ = 120
illustrates. The good type thus may be ‘forced’ to use very costly signals.

Mixed strategy equilibria. Up till now we have assumed that seller and buyer may only use pure strategies. Theorem 3 in
Appendix A shows that if we allow them to use mixed strategies as well, two additional types of equilibria may potentially
exist as well. In the first type of mixed equilibrium the bad type seller mixes between m = 0 and signal costs mb as given
in (4), whereas the good type chooses mg from expression (1) for sure. The bad type’s mixing probability qb ≡ Pr(m = mb)

follows from the requirement that observing z∗ should make the buyer indifferent (i.e. β(z∗) = β∗). For the bad type to
be willing to mix, condition (5) now has to hold with equality. Given the appearance of Φ here, the resulting equilibrium

8 The mirror image requirement for the good type seller is that he should not have an incentive to deviate from mg towards m = 0, i.e. g · (Φ( z∗
σ ) −

Φ(
z∗−mg

σ )) � mg is needed. This actually has a bite in case (i) of Proposition 2. There a separating equilibrium may not exist when σ becomes large within
the relevant interval (0,σ ].

9 Also in part (ii) where β∗ < p <
β∗·g

(1−β∗)·b+β∗·g the separating equilibrium based on z∗
h vanishes for σ sufficiently small. In that case, however, an

equilibrium based on z∗
l < 0 always exists (given that σ � σ ). In this equilibrium the buyer a priori intends to buy and even receiving a moderately

negative signal does not lead her to behave differently. The bad type seller therefore does not have an incentive to deviate from m = 0. Part (iii) of
Proposition 2 can be intuitively understood from considering how cutoff level z∗ (either equal to z∗

l or z∗
h ) varies with prior belief p. Because z∗ is close

to zero when p is high, the bad type seller obtains a strong incentive to deviate from m = 0, i.e. no-deviation condition (5) is violated. This upsets the
separating equilibria.
10 Note that standard belief-based equilibrium refinements (like the intuitive criterion of Cho and Kreps, 1987) are ineffective in our setup, because for
σ > 0 there are no out-of-equilibrium beliefs.
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(a)

(b)

Fig. 1. Signal densities and posterior beliefs in (a) the no noise case and (b) the σ = 10 case.

Table 3
Overview of mixed strategy equilibria.

σ Bad type mixes Good type mixes

z∗
h qb mb mg z∗

h qg mg

1 88.98 0.15 89.66 90.16 396.53 ≈ 0 399.71
5 77.95 0.15 87.88 91.11 385.14 ≈ 0 398.30

10 69.06 0.15 85.05 92.59 372.74 ≈ 0 396.28
40 – – – – 314.21 ≈ 0 380.75

120 – – – – 200.35 0.25 290.95

Remarks: This table is based on the parameter values used in the experiment: g = 400, b = 90, x = 300, y = 450 and p = 0.5. In the experiment we only
consider the four different values of σ of 0, 10, 40 and 120. A dash implies that a mixed strategy equilibrium does not exist for the given value of σ .

values of z∗ , mb and mg have to be calculated numerically. Table 3 provides an overview for some relevant parameter
values. For the values of σ considered in the experiment, this mixed equilibrium appears to exist for σ = 10 only.11 It exists
for smaller amounts of noise as well. In fact, it holds that mg and mb tend to b as σ tends to 0 and that limσ↓0 qb > 0.
When the noise vanishes this equilibrium thus converges to a mixed equilibrium of the no noise game that is insufficiently
revealing; with strictly positive probability the buyer takes the opposite decision of what she would do under complete
information.12

11 When σ becomes too large, the defining equation of qb results in a negative value.
12 In this particular case the buyer always buys if z = b is observed, although with positive (but small) probability the seller is of the bad type.
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In the other mixed strategy equilibrium the good type seller mixes between m = 0 and m = mg, while the bad type

chooses m = 0 for sure. For the good type to be indifferent it now must hold that g · (Φ( z∗
σ )−Φ(

z∗−mg
σ )) = mg , so also here

closed form expressions cannot be obtained. What can be shown theoretically, however, is that this equilibrium converges
to a pooling (on m = 0) equilibrium when the noise becomes small, i.e. limσ↓0 qg = 0. Moreover, signal costs mg become
large for low values of σ : limσ↓0 mg = limσ↓0 z∗ = g . The parametric examples in Table 3 illustrate this.

The first mixed strategy equilibrium discussed above challenges the prediction that for low values of σ separation will
not occur. In the other mixed equilibrium the positive signal costs mg decrease with σ . Because these predictions run counter
to the main predictions based on pure strategy equilibria only, we explicitly check in our empirical analysis whether actual
behavior is consistent with these mixed strategy equilibria.

2.3. Related theoretical literature

Matthews and Mirman (1983) consider a limit pricing model with a potential entrant and an incumbent monopolist
who is privately informed about industry conditions. The actual price the incumbent charges depends on both his output
choice and a random demand shock that occurs after the output decision. Owing to this noise, equilibria are obtained that
differ from standard signaling game equilibria in three ways: (i) there is a great reduction in the number of equilibria,
(ii) (separating) equilibrium strategies now directly depend on prior beliefs, and (iii) different amounts of information are
revealed in different separating equilibria, leading to richer comparative statics.13

These three features apply in our setting as well. First, with noise (generically) only five different equilibria exist at most,
as opposed to the continuum of equilibria in the no noise case. For a range of parameter values (e.g. p sufficiently high)
the equilibrium is even unique. Second, as expressions (1) through (3) reveal, separating equilibrium strategies directly vary
with prior belief p. For instance, cutoff value z∗

h decreases with p, implying that the buyer is more easily persuaded to
buy if she is already more inclined to do so a priori. This seems a much more intuitive prediction than the irrelevance of
p for the required level of separation that the no noise case predicts. Similar remarks apply to variations in g . Third, with
noise even a separating equilibrium is insufficiently revealing. Different separating equilibria may therefore lead to different
amounts of information being revealed. In our setting two different separating equilibria may actually exist side by side
when the prior is favorable. In the one based on z∗

h the signal costs that the two seller types choose are more dispersed
and the buyer obtains more information than in the one based on z∗

l (cf. Proposition 1).
Carlsson and Dasgupta (1997) focus on equilibrium selection in signaling games without noise, by studying the limiting

set of ‘noise–proof ’ equilibria that results from letting the noise vanish. Among other things, they show that every noise–
proof equilibrium of the no noise game is necessarily insufficiently revealing. Our theoretical analysis replicates this finding
for our setup. In particular, by letting σ go to zero Theorems 2 and 3 in Appendix A show that there exist only two noise–
proof equilibria in the no noise game, viz. pooling on m = 0 and the mixed equilibrium described before in which only the
bad type mixes between m = 0 and mb = b. Both are insufficiently revealing, as with positive probability the buyer takes a
decision that she will regret ex post.14

Despite these similarities, our theoretical findings differ in some other important respects from these two earlier studies.
In both Matthews and Mirman (1983) and Carlsson and Dasgupta (1997) the equilibria of the noisy signaling games they
study are always separating.15 In contrast, our setup allows for pooling equilibria as well. At the same time, only in our
game the existence of a separating equilibrium is not guaranteed and depends on the amount of noise in the signal. Unlike
these previous authors, therefore, we are able to study the question of how the existence of different types of equilibria
(and thus different types of equilibrium strategies) varies with noise.

The main driving force why we obtain results that differ from both Matthews and Mirman (1983) and Carlsson and
Dasgupta (1997) is that in these earlier papers the seller’s (message) choice actually serves two purposes. Besides a pure
signaling function geared towards influencing the behavior of the receiver, the seller’s choice also allows him to optimally

13 The introduction of noise may have profound implications in complete information contexts as well. Bagwell (1995) studies a noisy leader game in
which a follower observes the actual choice a leader made with some noise. The striking result he obtains is that the standard first-mover advantage
then completely disappears. As pointed out by van Damme and Hurkens (1997), this conclusion depends on the restriction to pure strategies. When the
noise is small, there always exists a mixed strategy equilibrium that approximates the standard Stackelberg outcome of the game without noise. Also the
assumption of complete information is crucial. Maggi (1999) shows that the value of commitment reappears when the leader’s choice is based on private
information that is payoff-irrelevant for the follower. The latter assumption allows Maggi to abstract away from signaling considerations, which are the
main focus of this paper.
14 Some other main findings of Carlsson and Dasgupta (1997) do not carry over to our setting. For example, by Proposition 1(a) it follows that pooling

on m = 0 is noise–proof. But for p < β∗ this equilibrium does not survive the never-a-weak-best response (NWBR) refinement in the game without noise.
Unlike in Carlsson and Dasgupta (1997), therefore, in our setup not every noise–proof equilibrium satisfies NWBR. Likewise, we do not find a unique
noise–proof equilibrium whereas in Carlsson and Dasgupta it “often” is.
15 The same holds for the noisy signaling model used by Kanodia et al. (2005) to study a firm’s optimal investment in the presence of capital market

imperfections. Calveras (2003) embeds a noisy signaling game in a model of a bank that can manipulate the noisy information a regulator observes.
His signaling subgame allows for both pooling and separating equilibria (see his Proposition 3). Apart from his model being much more specific than
ours, Calveras does not study how the existence of the different types of equilibria varies with the amount of noise nor does he consider mixed strategy
equilibria. The latter also applies to Hertzendorf’s (1993) analysis of noisy advertising in the multi-dimensional signaling model of Milgrom and Roberts
(1986). The purpose of his study is to show that in the presence of noise, no separating equilibrium exists in which prices and advertising are simultaneously
used as informative signals.
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adapt to changing circumstances. In Matthews and Mirman this adaptation purpose for example follows from the fact that
the output choice (message) of the incumbent monopolist (seller) varies with industry conditions (type), even when the
receiver (potential entrant) is fully informed on these industry conditions. Optimal output is higher the more favorable
industry conditions are. The seller’s output choice therefore does not perform a pure signaling function alone. The same
applies for the setup in Carlsson and Dasgupta (1997).16 The important consequence of this two-folded purpose is that (in
the noisy games) the seller’s best response correspondence is strictly monotonic in his type (cf. Proposition 3.1 in Carlsson
and Dasgupta, 1997). Loosely put, the two purposes together pull sellers towards separation.

In our setup the seller’s message choice only serves a pure signaling function, such that (costly) signaling constitutes a
pure social waste.17 If in our game the seller’s type would be public information, the seller’s (‘message’) choice would be
independent of his type and equal m = 0 for both types.18 As a result, sellers’ best responses are only weakly monotonic in
types (cf. the proof of Lemma 1 in Appendix A). The pull towards separation is therefore much weaker. This implies in turn
that our setup allows for pooling equilibria as well while at the same time the existence of a separating equilibrium is not
guaranteed.

3. Experimental design and procedures

The computerized experiment was run at the University of Amsterdam where subjects were recruited from the student
population. Subjects read the on-screen instructions at their own pace. At the end of the instructions, subjects had to answer
some test questions correctly before they could proceed. They also received a summary of the instructions on paper.19

Subjects knew that the experiment consisted of two parts. Part 1 lasted for 40 periods. In part 2 subjects formulated a
strategy that automatically determined their play in another 10 periods. Subjects received instructions for the second part
only after the first part was finished. At the beginning of the experiment, subjects received a starting capital of 5000 points.
Their period earnings (losses) were added to (subtracted from) this starting capital. At the end of the experiment, points
were exchanged into euros at a rate of 1 euro for 250 points. In 1.5 to 2 hours, a total of 184 subjects earned on average
37.05 euros with a standard error of 10.89.

At the start of the first part subjects were assigned to the role of seller or the role of buyer. Throughout the whole
experiment subjects kept the same role. Each period, sellers and buyers were randomly matched in pairs within a (fixed)
matching group of 8 subjects. Subjects knew that they were never matched with the same subject twice in a row. In
most sessions, we ran 2 matching groups simultaneously. At the start of a period, the seller was privately informed of the
quality of his product. In each matching group, 2 products had high quality and 2 products had low quality. Thus, the prior
probability of a high-quality product was 0.5, a fact that was communicated to all subjects. The quality of the product of
a seller in a given period was independent of the quality of his product in another period. After observing the quality of
his product, the seller chose a signal cost, an integer amount between 0 and 400. The computer added a noise term, an
independent draw from a N(0, σ 2) distribution to the signal cost, and communicated the resulting signal, but not the signal
cost nor the noise term, to the buyer. We communicated the density of the normal distribution with the help of a figure
and some explanatory remarks about symmetry and confidence intervals. The buyer decided whether or not to buy the
product, after which the payoffs of the pair were determined. The payoff table was common information to the subjects.

At the end of a period, both players were informed of the quality, the signal cost and the signal. In addition, subjects
could view a social history window at the bottom of the screen that showed the results of all pairs in their own matching
group for the last 10 periods. For buyers, the screen was ordered on signal (from high to low), quality (from high to low),
signal cost (from high to low) and buy-decision (from yes to no), respectively. Subjects could recognize their own previous
results as these were printed against a different, light-gray background. Fig. 2(a) shows a snapshot of this window. Fig. 2(b)
shows the social history window for sellers, which was ordered on signal cost (from high to low), signal (from high to
low), buy-decision (from yes to no) and quality (from high to low), respectively. We provided this information because it
allows subjects to learn faster. Our paper deals with the topic of equilibrium selection and the comparative statics of the
equilibrium predictions with respect to the amount of noise. To address these issues play must converge to equilibrium in
the first place. We think that, compared to the world outside of the laboratory, the superior information provided to subjects
balances their lack of experience with the game. A similar social history (on black board) was first provided in a signaling

16 Let π denote the probability with which the buyer buys and u(t,m,π) the sender’s utility. Carlsson and Dasgupta (1997) assume that ∂u(t,m,π)
∂m = 0

has a unique (interior) solution mπ (t), with mπ (t) strictly increasing in t (cf. Assumptions (U3) through (U5) on p. 443). Note that in our setup we have
u(t,m,π) = t · π − m, so ∂u(t,m,π)

∂m = −1 and this assumption is not met.
17 By focusing on costly signaling our setup differs from “cheap talk” games in which messages are costless. See Blume et al. (2007) for an analysis of

the impact of introducing noise on the amount of information transmission in the cheap talk model of Crawford and Sobel (1982). Landeras and Pérez de
Villarreal (2005) introduce noise into a screening model in which the uninformed party moves first.
18 Our different results are thus not due to the fact that in our setup the marginal costs of raising m are independent of the seller’s type, as one a priori

might have expected. As explained in the main text, our setup is completely isomorphic to the case where seller’s utility equals u(t,m,π) = π − m
t , with

π the probability with which the buyer buys. Just as in Carlsson and Dasgupta (1997), in this specification marginal costs are type dependent.
19 The instructions are available at journal’s web site as online supplementary material.
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(a)

(b)

Fig. 2. Social history window (a) buyers (example) and (b) sellers (example).

Table 4
Experimental design.

Treatment σ # of matching groups # Subjects per matching group

σ0 0 4 8
σ10 10 5 8
σ40 40 6 8
σ120 120 8 8

Remarks: Per period payoffs for the subjects are given in Table 1, with b = 90, g = 400, x = 300, y = 450 and p = 0.5.

experiment of Miller and Plott (1985), who introduced it in the later sessions to help subjects recognize the relationship
between types and choices.20

The variance of the error term in the signal (σ 2) was the only variable that varied between the 4 treatments. We
refer to the treatments as σ0, σ10, σ40 and σ120. Table 4 summarizes the details of the experimental design. Each subject
participated in one treatment only. We correctly anticipated that behavior would become more volatile for higher noise
levels in the signals. Therefore, we decided to collect a larger number of observations for the treatments with the higher
noise levels.

In the second part of the experiment, we asked subjects to formulate a strategy for periods 41–50. Buyers were asked to
provide a cutoff level for the signal received, at and above (below) which they would (not) buy the product. They could also
indicate that they would never or always buy the product, independent of the signal. Sellers were asked to choose a signal
cost for high-quality products as well as for low-quality products. We explicitly mentioned that it was up to the seller to
decide whether he wanted to choose the same signal costs for high and low quality or different amounts. We emphasized
that otherwise the game was exactly the same as the one they played in the first 40 periods. When all subjects had chosen
their strategies, the computer automatically played out the final 10 periods.

4. Experimental results

We present the experimental results in two parts. In Section 4.1, we deal with the results at the aggregate level. We
show how actual signal costs vary with the noise level and we investigate whether the data come closer to the pooling
equilibrium or the separating equilibrium in the treatments where the equilibria coexist. Here, we focus on the data of the
second half of part 1 (periods 21–40) when subjects had become familiar with the game. It turns out that the results for
the strategy method confirm the results of part 1 to a large extent.21 We have chosen to limit the report of the results on

20 Other papers have used role reversion to accomplish this. After senders have become receivers, it becomes easier for them to interpret the meaning of
a signal (e.g., Brandts and Holt, 1992).
21 Brandts and Charness (forthcoming) provide a survey of methodological work on the strategy method and conclude that the strategy method does not

affect results in a qualitative sense. Our results are in agreement with their main conclusion.
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Fig. 3. Running histograms for periods 21–40; for each signal cost the relative frequency of cases in the interval [signal cost−5, signal cost+5] is displayed.

the strategy method to the extent that they provide additional insight. In Section 4.2, we zoom in on the behavior of our
subjects and provide a coherent explanation of the main results. Here we use the data of the whole experiment.

4.1. Aggregate overview main results

First we take a look at how sellers behaved. Fig. 3 presents histograms of the signal costs chosen by high-quality sellers
and low-quality sellers. In treatment σ0, high-quality sellers most often chose a signal cost of 100, followed by 91. A large
majority of 93.2% of submitted signal costs lied between 90 and 100. A total of 88.8% of the signal-costs submitted by
low-quality sellers in σ0 equaled exactly 0. In this treatment, sellers’ behavior provides clean evidence for separation.

Also in treatment σ10 low-quality sellers overwhelmingly chose 0, while high-quality sellers chose to separate. The
latter tended to send higher signal costs, also at a higher variance than in σ0: 86.5% of the submitted signal costs were in
between 90 and 130. This pattern of higher and more volatile signal costs extends to treatment σ40, where high-quality
sellers separated with 79.6% of the signal costs lying between 100 and 160, while low-quality sellers stuck to 0. The picture
looks very different for treatment σ120, though. With 40.9 % of the high-quality sellers choosing a signal cost of exactly 0,
the focus of sellers’ attention seemed to be on pooling. Still a considerable fraction of 41.6% of the signal costs was at 90 or
above. High signal costs were very spread out. In contrast, low-quality sellers by and large chose a signal cost of 0, like in
the other treatments.

Very high signal costs were observed occasionally. In treatments σ40 and σ120, high-quality sellers chose signal costs of
at least 230 in 4.2% and 5.6% of the cases, respectively. In the other treatments such high signal costs were never observed.

A key prediction of the theoretical analysis is that conditional on the existence of a separating equilibrium, the signal
costs should increase with noise as long as subjects coordinate on separating. Table 5 splits the submitted signal costs into
pooling (below 90) and separating (at and above 90), for low-quality sellers as well as high-quality sellers.22 Conditional
on a separating signal cost being sent, the signal cost indeed increased monotonically from on average 97.9 in σ0 to 158.3
in σ120. A Kruskall–Wallis test performed at the group level rejects the hypothesis that there are no differences in signal
costs between the treatments (p = 0.02).23

The table foreshadows the main finding regarding subjects’ inclination to separate. The relative frequency of pooling
signals increases with noise. In treatments σ0, σ10, σ40 and σ120, high-quality senders submitted pooling signal costs in
0.6%, 2.0%, 7.5% and 58.4% of the cases, respectively. In all treatments the overwhelming majority of low-quality sellers
submitted signal costs of 0. Thus, sellers aimed for separation in treatments σ0, σ10 and σ40, while the results are mixed
for treatment σ120, where the pooling equilibrium attracted sellers more than the separating equilibrium did.

22 This classification follows from the observation that in a separating equilibrium (if it exists), the good type seller always chooses a signal cost that
exceeds 90 (see the case p < β∗ in Table 2). Positive signal costs below 90 thus cannot be interpreted as an attempt to separate and are therefore labeled
pooling.
23 Mann–Whitney tests reveal that all pair-wise comparisons of signal costs between treatments are significant or weakly significant, except for the

comparison between σ40 and σ120.
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Table 5
Pooling and separating signal costs (SC) in periods 21–40.

Pooling: SC < 90 Separating: SC � 90 Predicted
separating eq.n Actual Emp. best response n Actual Emp. best response

Low type
σ0 149 0.7 (7.0) 2.1 (13.0) 11 112.3 (11.7) 0.0(0.0) 0.0
σ10 200 2.3 (12.9) 0.0 (0.0) – – – 0.0
σ40 235 2.8 (11.7) 0.0 (0.0) 5 124.0 (28.8) 0.0(0.0) 0.0
σ120 319 1.6 (7.0) 0.0 (0.0) 1 110.0 (0.0) 0.0(0.0) 0.0

High type
σ0 1 80.0 (0.0) 80.0 (0.0) 159 97.9 (11.4) 93.8 (4.4) 90.0
σ10 4 70.0 (4.1) 112.5 (15.0) 196 113.6 (15.9) 117.9 (11.6) 48.7*

σ40 18 38.3 (33.7) 149.6 (16.2) 222 140.5 (41.5) 156.3 (17.5) 142.2
σ120 187 17.7 (29.9) 190.8 (73.8) 133 158.3 (55.5) 187.4 (62.5) 231.6

Remarks: n gives the number of observations. Standard deviations (based on individual observations) are in parentheses.
* When σ = 10 only pooling on zero is a Nash equilibrium; a choice for 48.7 by the high type is a best response given that the low type chooses a signal

cost of zero (but not vice versa).

Table 5 also reveals two differences between equilibrium predictions and submitted signal costs. The first difference is
that the submitted signal cost increased on average monotonically with noise, while theoretically a separating equilibrium
does not exist in treatment σ10. The second difference is that high-quality sellers’ signal costs did not increase as rapidly
with noise (from σ40 to σ120) as equilibrium predicts.

It only makes sense for sellers to play equilibrium when buyers play equilibrium. Therefore, a more relevant question
is to what extent sellers chose best responses to the actual behavior of the buyers. We describe the latter by means of an
empirical cutoff value ẑ∗ . In particular, we determined in each matching-group and each period which cutoff level ẑ∗ for
the buyers minimized the sum of the buyers’ errors against that cutoff level in the 10 most recently completed periods of
that particular group.24 We subsequently set the seller’s empirical best response equal to the signal cost that maximized
expected payoff given this cutoff level ẑ∗ of the buyers.25 Often, there was a range of cutoff levels that fitted the data
equally well. In those cases, we determined the best response to the maximum cutoff level in the optimal range and the
best response to the average cutoff level in the optimal range. It turns out that the best response on the basis of the
maximum cutoff level was closer to the actual signal cost than the one based on the average. Therefore, we report statistics
based on the maximum.

Table 5 includes a column that reports the sellers’ best responses. In agreement with the actual data, the best responses
of high-quality sellers increased monotonically with noise, with lesser increments than the equilibrium-predictions. Note
that the high-quality sellers’ best response in treatment σ10 equaled 117.9, quite close to the actual data, despite the fact
that a separating equilibrium does not exist here. We will come back to this important finding in Section 4.2.

To assess whether subjects coordinated on a pooling or a separating equilibrium, buyers and sellers’ behavior have to
be scrutinized simultaneously. First, we deal with the possibility that subjects played in accordance with the logic of a
mixed equilibrium. As explained in Section 2, there are two types of mixed equilibria. The one where the good type mixes
has two features that are incompatible with the data. The first one is that the comparative statics prediction is violated.
According to this equilibrium, the positive signal cost chosen by the high-quality seller should decrease with (increasing)
noise, while it actually increased. Second, in σ120, the good type should mix between 0 with probability 0.75 and 290.95
with probability 0.25. High-quality sellers submitted signal costs higher than 250 in only 2.2% of the cases, however. In all
other treatments, the mixed equilibrium is observationally indistinguishable from pure pooling equilibria and we will deal
with those later.

The next type of mixed equilibrium is the one where the low-quality seller mixes. This equilibrium exists in σ10, but
not in σ40 nor in σ120 (see Table 3). In σ10, in 6 out of 200 cases low-quality sellers chose a signal cost larger than 0,
three times 70 and three times 80. According to the mixed equilibrium, bad type sellers should choose a signal cost 85 with
probability 0.15 and 0 otherwise. So the positive signal costs chosen are below the theoretically expected level. Moreover, the
proportion of positive signal costs (3%) falls considerably short of the theoretically expected level (15%). In fact, a binomial
test rejects the hypothesis that the proportion of positive observations is in line with the theoretical prediction (p = 0.00,
test performed at the choice level). Choosing positive signal costs was not a great idea for bad type sellers: 5 out of these
6 positive signal costs led to signals above the equilibrium cutoff level of buyers, but only 3 actually led to a sale. Thus,
sending these positive signal costs led to an average loss of 30. These 6 observations are probably best interpreted as
unsuccessful attempts of low-quality sellers to fool the buyers, or simply mistakes, instead of mixed-equilibrium play. We
conclude that mixed equilibria do not organize the data well. In the remainder, we will therefore focus on the pure strategy
equilibria.

For each matching group, we computed the number of outcomes consistent with the pooling equilibrium and the number
of outcomes consistent with the separating equilibrium. An outcome is consistent with the pooling equilibrium if and only

24 Remember, sellers had access to a social history screen of 10 periods deep of their own matching-group, which also listed the behavior of the buyers.
25 Depending on the level of ẑ∗ , the best response of the good [bad] type seller equals either signal costs of mg [mb ] as given by expression (1) [(4)], or

zero signal costs.
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if there was no sale. An outcome is consistent with the separating equilibrium if and only if the buyer’s decision whether
or not to buy was in accordance with the separating prediction that depended on the quality of the seller and the actual
noise term in the signal.26 (Thus, an outcome may be consistent with both types of equilibria and also with neither type.)
Table 6 lists for each matching group the extent to which actual play agreed with either of the equilibria in periods 21–40.
In treatments σ0, σ10 and σ40, the outcomes of all groups agreed much better with the separating equilibrium than with
the pooling equilibrium. In treatment σ120, the results were less clear-cut; either equilibrium attracted half of the groups.
The results based on the strategy method in periods 41–50 were the same as the ones reported for periods 21–40, except
that two of the groups (#4 and #5 in treatment σ120) that were playing in accordance with separation in periods 21–
40 switched to pooling in periods 41–50. In fact, in periods 21–40, for these two groups the separating equilibrium only
predicted marginally more outcomes than the pooling equilibrium. Our interpretation is that these groups had not yet
converged to equilibrium in periods 21–40. After unsuccessfully trying to establish separating play, subjects in these groups
switched to pooling in the final 10 periods. Thus, in σ120, at the end of the experiment 6 of the 8 matching-groups agreed
with pooling and the 2 others with separating.

Table 6 also shows how and to what extent actual results deviate from best responses. The procedure to calculate best
responses for sellers was already explained above. For buyers we used the following procedure. In each matching-group
and each period, we determined the average signal cost chosen by the good type sellers (m̂g ) and the average signal cost
chosen by the bad type sellers (m̂b) in the last 10 periods. Then we computed the best response cutoff level zBR given these
average signal costs.27 This cutoff level and the received signal together determined the buyer’s best response decision to
buy or not. In most groups of the treatments with noisy signals high-quality sellers chose lower signal costs than the best
response prediction. Note also that buyers bought less than the best response model predicted in treatments σ0, σ10 and
σ40, but more than the best response model in treatment σ120. This limits the scope for an explanatory role of risk-aversion.
Risk averse buyers should use higher cutoff levels than risk neutral buyers and therefore buy less often. The data in σ0, σ10
and σ40 deviate in the direction expected by risk aversion. In σ120, the data deviate in the opposite direction, however.

We now take a closer look at buyers’ behavior. For each individual buyer, we estimated her personal cutoff signal ẑ∗
below which she did not buy. The cutoff level was set such that the number of errors against the cutoff level was minimized.
Table 7 presents the data separately for the groups that were classified as pooling and the ones that were classified as
separating in Table 6. In σ120, subjects in pooling groups employed much larger cutoff levels than subjects in separating
groups. For the separating groups, subjects used higher cutoff levels than predicted by best response and equilibrium in
treatments σ0, σ10 and σ40, but lower cutoff levels in treatment σ120. A Kruskall–Wallis test performed at the group level
does not reject the hypothesis that there are no differences in estimated cutoff levels between the treatments (p = 0.51).
Overall, subjects’ cutoff levels were not sufficiently responsive to the noise in the signal.

Taken together, our main findings can be summarized as follows. In the treatments with no, low and intermediate noise
the high-quality sellers clearly aim for separation, choosing signal costs that increase monotonically with noise. For high
noise seller behavior is mixed with the majority of (high-quality) sellers focusing on pooling. The empirical best responses
of high-quality sellers also increase with noise, albeit less steep than (separating equilibrium) theory predicts. Outcomes
resulting from the joint behavior of seller and buyer are in agreement with separation for σ0, σ10 and σ40. Yet for the case
of σ120 the majority of the matching groups coordinate on a pooling equilibrium. For the separating groups, buyers’ actual
cutoff levels do not vary with noise, contrasting best response (and equilibrium) behavior which requires higher cutoffs for
higher levels of noise.

4.2. Explaining the results

In the previous section we compared actual behavior to equilibrium behavior and the heuristic of (empirical) best re-
sponse. Our main findings indicate that actual choices do not fully track both equilibrium predictions and empirical best
responses. This particularly holds true for buyers, whose actual cutoff levels appear largely insensitive to noise. Because
playing best response can be cognitively demanding, it is not unlikely that subjects make use of other plausible (and sim-
pler) heuristics like reinforcement or imitation as well. In this section, we employ a maximum likelihood procedure to
estimate an attraction learning model that allows sellers and buyers to use any of these three heuristics. We are not the
first to develop learning models along these lines. To the contrary, our approach blends with the work of Brandts and Holt
(1992, 1993), Cooper et al. (1997a, 1997b), McKelvey and Palfrey (1998), Camerer and Ho (1998, 1999) and Wilcox (2006).
Our approach differs from previous work primarily because of the noise in the signaling technology.

We first describe the model for the sellers. In period t , seller i with product quality q (low or high) updates attraction
Ai,c,q[t] of choosing signal cost c according to:

Ai,c,q[t] = ϕ Ai,c,q[t − 1] + δBL EπBL,i,c,q[t] + δIM EπIM,i,c,q[t] + (1 − δBL − δIM)EπRE,i,c,q[t] (6)

26 For σ = 10 where a separating equilibrium does not exist, we defined an outcome consistent with separation if either (i) the seller is of the bad type
and there is no sale, or (ii) the seller is of the good type and trade takes place. Here the definition of a separating outcome thus corresponds with the
σ = 0 case.

27 This best response is given by zBR = 1
2

{
(m̂g + m̂b) + 2σ 2 ln

[
β∗ (1−p)

(1−β∗ )p

]
m̂ −m̂

}
.

g b
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t. BR Act. BR Act. BR

2.3 0.0
1.0 176.4
3.8 53.8
6.3
8.8

1.1 0.0 5.0 0.0 0.0 0.0
2.6 210.3 103.8 178.7 197.6 160.2
2.5 25.0 41.3 30.0 40.0 37.5
7.5 58.8 60.0
5.0 68.8 87.5

S S

e average signal cost SC within a group (by quality level),
on the basis of average signal cost when quality is high.
) and 77.5% (75.0%) of the outcomes agreed with pooling
Table 6
Average actual outcomes per group and comparison with best response (periods 21–40).

1 2 3 4 5 6

Act. BR Act. BR Act. BR Act. BR Act. BR Ac

σ0 SC Low 2.4 0.0 2.5 8.0 0.0 0.0 28.4 0.0
High 91.7 90.0 92.8 89.9 100.0 100.0 106.8 95.0

Buyer buys? 50.0 51.3 50.0 51.3 50.0 50.0 55.0 62.5
Agrees with eq. Pool 50.0 50.0 50.0 45.0

Separ. 100 97.5 100.0 87.5
P/S S S S S

σ10 SC Low 6.0 0.0 5.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0
High 97.8 103.9 100.3 105.3 118.6 124.3 122.0 130.8 125.1 124.6

Buyer buys? 47.5 53.8 48.8 52.5 47.5 50.0 42.5 50.0 46.3 50.0
Agrees with eq. Pool 52.5 51.3 52.5 57.5 53.8

Separ. 95.0 93.8 97.5 92.5 96.3
P/S S S S S S

σ40 SC Low 2.0 0.0 0.5 0.0 2.8 0.0 3.0 0.0 1.4 0.0 2
High 90.0 136.1 112.2 156.0 119.3 148.2 131.3 155.2 153.3 162.7 19

Buyer buys? 43.8 50.0 42.5 52.5 46.3 55.0 48.8 55.0 50.0 51.3 5
Agrees with eq. Pool 56.3 57.5 53.8 51.3 50.0 4

Separ. 83.8 90.0 91.3 93.8 92.5 8
P/S S S S S S S

σ120 SC Low 0.1 0.0 0.0 0.0 0.5 0.0 0.0 0.0 9.0 0.0
High 4.3 121.1 28.8 205.5 32.8 231.7 62.3 220.3 86.9 187.5 9

Buyer buys? 35.0 0.0 21.3 7.5 23.8 1.3 45.0 23.8 32.5 22.5 2
Agrees with eq. Pool 65.0 78.8 76.3 55.0 67.5 7

Separ. 42.5 68.8 58.8 72.5 80.0 7
P/S P P P S(P) S(P) P

Remarks: We have 23 independent group observations, with 4, 5, 6 and 8 groups for treatments σ0, σ10, σ40 and σ120, respectively. The table reports th
buyers’ buy decision, and the percentage of outcomes that is in line with the pooling and the separating equilibrium outcomes. Groups are ordered
‘Act.’ means actual, ‘BR’ refers to best response. Groups 4 and 5 in σ120 converged to pooling with the strategy method: in periods 41–50, 87.5% (75.0%
(separating) in groups 4 and 5, respectively.
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Table 7
Average estimated cutoff levels and tests for equality (periods 21–40).

Pooling groups Separating groups

Estimated actual
(Stan. dev.)

Predictions best
response
[equilibrium]

Actual vs. best
response
[equilibrium]

Estimated actual
(Stan. dev.)

Predictions best
response
[equilibrium]

Actual vs. best
response
[equilibrium]

σ0 – – – 94.0 (4.1) 53.0 [90.0] 0.07 [0.11]
σ10 – – – 96.2 (15.1) 57.8 [25.6*] 0.04 [0.04]
σ40 – – – 98.5 (22.4) 75.3 [75.7] 0.03 [0.03]
σ120 211.5 (166.2) 330.9 [800] 0.72 [0.07] 96.9 (84.8) 122.2 [141.0] 0.47 [0.07]

Remarks: For each buyer the actual cutoff level was estimated on the basis of the choices in periods 21–40. The cutoff level was set such that the
number of errors against the cutoff level was minimized. Standard deviations (based on observations per person) are in parentheses; equilibrium pre-
dictions/comparisons appear in square brackets.

* When σ = 10 only pooling on zero is a Nash equilibrium. Within treatment comparisons are based on Wilcoxon tests performed at the matching group
level.

where φ represents the weight on the attraction in the previous period, δBL represents the weight on belief learning (i.e.,
best response), δIM the weight on imitation learning and (1 − δBL − δIM) the weight on reinforcement learning. For each level
of signal cost c, the seller’s expected payoff from belief learning EπBL,i,c,q[t] is determined according to the best response
procedure described in the previous section. That is, the error minimizing cutoff level for the buyer is estimated from the
history screen. Then, given this cutoff level, the expected payoff for the seller for each signal cost and quality is calculated.

The seller’s expected payoff from imitation EπIM,i,c,q[t] is determined with the following procedure. For each possible
combination of signal cost and quality, each entry in the history screen is given a weight depending on how close the signal
cost of that entry is to the particular signal cost c in question. For each entry a weight is defined by 1/(1 + |centry − c|),
where centry represents the signal cost observed in the specific entry. Then the weight of each entry is normalized so that
the weights add up to 1. The weights thus denote the ‘resemblance’ of the signal cost of the entry in the history screen to
the signal cost considered. For each entry the seller’s payoff given the buyer’s actual decision is multiplied by the weight.
Then the weighted payoff EπIM,i,c,q[t] is constructed by summing the resulting numbers over all the entries. Note that this
payoff is largest for signal costs c that imitate the most successful signal costs observed in the past. These include relatively
low signal costs that were combined with lucky signals (i.e. a high draw for the random noise term).

Finally, the expected payoff from reinforcement EπRE,i,c,q[t] depends on whether the signal cost c was actually chosen by
the subject in the previous period. If it was not chosen in a particular combination of signal cost and quality, the expected
payoff equals 0. If it was chosen, the expected payoff equals the seller’s payoff given the buyer’s actual decision and the
quality (low or high).

Given a seller’s profile of attractions in a certain period, he chooses the signal cost according to a logistic response
function. In particular, the probability Pi,c,q[t] that seller i with product quality q chooses signal cost c in period t equals:

Pi,c,q[t] = eλi Ai,c,q[t]∑350
c=0eλi Ai,c,q[t] (7)

where λi represents the seller’s precision level.
For the buyers we employed an estimation procedure with exactly the same structure. That is, in period t buyer i who

observed the signal s updates attraction Ai,a,s[t] of choosing action a (with a = 0 if she does not buy and a = 1 if she buys)
according to:

Ai,a,s[t] = ϕ Ai,a,s[t − 1] + δBL EπBL,i,a,s[t] + δIM EπIM,ia,s[t] + (1 − δBL − δIM)EπRE,i,a,s[t] (8)

Here φ, δBL , δIM and (1−δBL −δIM) are defined like above. For each signal and action, the buyer’s expected payoff from belief
learning EπBL,i,a,s[t] is calculated according to the buyer’s best response procedure previously described in Section 4.1. In
the history screen, the average signal cost of the high-quality seller and the average signal cost of the low-quality seller is
determined. Given these average signal costs of the two seller types, the expected payoff for the buyer for each possible
combination of action and signal is calculated.

The following procedure explains how the buyer’s expected payoff from imitation EπIM,i,a,s[t] is determined. For each
possible combination of signal and action, each entry in the history screen receives a weight that correlates with the
proximity of the signal of that entry to the particular signal in the combination. Specifically, for each entry the weight is
given by 1/(1 + |sentry − s|), where sentry represents the signal observed in the specific entry. The weights are normalized so
that they add up to 1. For each entry the weight is multiplied by the buyer’s payoff given the buyer’s action and the seller’s
actual quality, and the weighted payoff EπIM,i,a,s[t] is constructed by summing the resulting numbers over all the entries.
We refer to this heuristic as imitation, because it is determined according to the same structure as for the seller. Unlike
in the seller case, however, the heuristic could alternatively be interpreted as a “behavioral” belief learning model. The
reason is that buyers observe signals and update the corresponding attractions, but do not choose signals. So where sellers
can simply imitate the most successful signal costs of other sellers, a similar straightforward interpretation is lacking for the
buyers. For them the procedure contains a belief learning element, because by allowing the buyer to update the expected
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Table 8
Maximum likelihood estimation results learning model (periods 11–40).

Buyer model Seller model

σλ = 0 σλ � 0 σλ � 0 σλ = 0 σλ � 0 σλ � 0

δBL 0.23 (0.04) 0.48 (0.09) – 0.26 (0.01) 0.28 (0.01) –
δIM 0.27 (0.06) 0.35 (0.07) – 0.18 (0.01) 0.18 (0.01) –
δBL(σ0) – – 0.10 (0.15) – – 0.17 (0.01)
δIM(σ0) – – 0.79 (0.24) – – 0.41 (0.04)
δBL(σ10) – – 0.00 (0.09) – – 0.46 (0.03)
δIM(σ10) – – 0.94 (0.27) – – 0.24 (0.03)
δBL(σ40) – – 0.36 (0.12) – – 0.29 (0.03)
δIM(σ40) – – 0.64 (0.20) – – 0.45 (0.03)
δBL(σ120) – – 0.93 (0.14) – – 0.53 (0.01)
δIM(σ120) – – 0.07 (0.05) – – 0.10 (0.00)
Φ 0.55 (0.08) 0.67 (0.05) 0.22 (0.20) 0.86 (0.01) 0.89 (0.00) 0.89 (0.01)
μλ 11.52 (2.00) 7.51 (1.43) 13.96 (3.47) 22.81 (0.60) 24.52 (2.10) 29.43 (1.50)
σλ – 0.77 (0.11) 0.70 (0.09) – 0.78 (0.06) 0.88 (0.07)
− log L 810.2 753.6 696.4 8757.7 7984.1 7537.8

Remark: Standard deviations are in parentheses.

profitability of the buy decision corresponding to the received signal on the basis of the observed payoffs of buying after
different signals, it implicitly assumes that buyers make inferences about seller behavior.

The buyer’s expected payoff from reinforcement EπRE,i,a,s[t] in a particular combination of signal and action equals 0 if
the signal in the combination was not observed by the buyer in the previous period. If it was observed, the expected payoff
equals the buyer’s payoff given the seller’s actual quality and the action considered (either buy or not buy).

Given that the buyer updates her attractions in this way, she chooses whether or not to buy according to a logistic
response:

Pi,a,s[t] = eλi Ai,a,s[t]∑1
a=0eλi Ai,a,s[t] (9)

where λi represents the buyer’s precision level.
Following Wilcox (2006), we correct for heterogeneity between subjects by drawing the precision levels λi from a log-

normal distribution (μλ,σλ). We estimated the model from period 11 onwards, the first time that the history screen was
completely filled with observations from the 10 most recent periods. In period 11, we set all the attractions of period 10
equal to 0.28

Table 8 presents the results. First we discuss the results for the buyer model. The table presents three versions of the
model, one where all precision levels are forced to be the same (σλ = 0, first column) and two with heterogeneity between
subjects (second and third column). Unsurprisingly, the likelihood of the data improves significantly for the buyer model
when we allow for heterogeneity (comparison first and second column, likelihood ratio test, p < 0.001). Remarkably, the
estimates of the buyer model put substantially less weight on reinforcement learning when heterogeneity is introduced: the
weight decreases from (1 − δBL − δIM) = 0.49 when σλ = 0 to 0.17 when σλ � 0 (second column). Thus, like Wilcox (2006),
we find that ignoring heterogeneity leads to a gross overstatement of reinforcement learning in the buyer model. When
the estimates are corrected for differences between subjects, the largest weight is assigned to belief learning (0.48) and
imitation or behavioral belief learning (0.35). When we in addition allow the learning parameters to vary across treatments
(third column), the likelihood again increases significantly and the weight assigned to reinforcement learning is further
reduced. In none of the treatments the weight to reinforcement exceeds 0.17. Notice that the proportions assigned to belief
learning and imitation (“behavioral” belief learning) vary substantially across treatments. As we argued above, for the buyer
these two models are very much aligned and capture more or less the same behavior, so it is not surprising that these
proportions vary.

The picture for the sellers looks very different. In the comparison of columns four and five, the estimates of the seller
model appear more robust with respect to the heterogeneity of subjects. With or without heterogeneity, reinforcement
learning receives the highest weight. When we allow the learning parameters to vary across treatments (final column), the
weight on reinforcement diminishes somewhat but still remains sizable, viz. in the range of 0.26 to 0.42. The estimates thus
suggest a genuine role for reinforcement learning. This makes sense if one takes the complexity of the problem into account
(see below). Like in the buyer model, the likelihood of the data improves significantly for the seller model when hetero-
geneity is introduced (comparison fourth and fifth columns) and when difference across treatments are allowed (comparison
fifth and sixth columns, in both cases likelihood ratio test yields p < 0.001).

28 In the maximum likelihood procedure we had to integrate over the lognormal distribution. We did this numerically, approximating the integral by a
discrete trapezoid. We will send the details of this procedure upon request. To keep the estimation problem manageable, we do not allow for heterogeneity
in φ. Wilcox (2006) mentions that the bias from ignoring heterogeneity in φ is a ‘relatively minor problem’.
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Fig. 4. Expected profit high-quality seller as function of signal cost given actual behavior of buyers in periods 21–40.

The sellers’ decision problem is complicated by the fact that they choose from a very large action space. In fact, in our
data we observe that sellers often repeat successful choices (for a given quality) and only experiment with a limited set of
signal costs. This feature of the data credits reinforcement learning. The combination of a high weight on reinforcement and
a high precision level correctly leads to high predicted probabilities of previously chosen signal costs. In contrast, buyers
face a much simpler decision problem, because they only have to judge the profitability of two actions given the signal that
they receive, with one of the actions (not buy) always leading to a payoff of zero. From this perspective, it makes perfect
sense that buyers employ more sophisticated heuristics like (“behavioral”) belief learning to a larger extent.

The estimated learning model helps explaining why subjects’ actual choices deviate (to some extent) from best response
behavior, as was observed in Section 4.1. First consider the behavior of sellers. Remember that in the treatments with noisy
signals, the high-quality sellers’ actual signal costs were smaller than their best responses (and also insufficiently responsive
to the noise). A plausible explanation for this is that reinforcement receives a lot of weight in the seller model. In the early
periods, sellers started with signal costs that were on average below the best response levels. Possibly high-quality sellers
originally started with a simple rule of choosing a signal cost equal to the payoff that a low-quality seller would receive
in case of a sale enhanced by a ‘safety margin’. They subsequently learned to a considerable extent by reinforcement and
therefore experimented too little, thus not finding out that their expected profits would be maximized at higher levels.

Another noteworthy feature of sellers’ behavior is that the volatility of the signal costs chosen by high-quality sellers
increased with the noise in the signal. As the histograms presented in Fig. 3 revealed, especially in treatment σ120 high-
quality sellers chose signals all over the place when they attempted to separate. Fig. 4 provides a coherent reason why this
may have occurred. This figure presents the expected profit of a high-quality seller and its variance conditional on the signal
cost submitted, given the actual average cutoff level of the buyers in a treatment. In treatment σ0, the payoff function is
steep and, indeed, high-quality sellers’ signal costs in this treatment were clustered in a very small interval. In treatment
σ120, however, the payoff function has become very flat. Thus even though sellers partly employ a belief learning heuristic
– see the estimates of δBL in the right-hand panel of Table 8 – their expected payoffs from belief learning provide little
guidance in locating the exact best response. This also provides an additional explanation (on top of reinforcement playing
a genuine role) why especially for σ120 actual signal costs fall short of the empirical best response.

Turning to the buyer, the lack of responsiveness of buyers’ cutoff levels to noise reported in Section 4.1 can be explained
in a similar way. It is quite natural for buyers to start with a ‘myopic’ cutoff level of 90, the amount that the low-quality
seller earns when his good is bought. The question of interest is why in the treatments with noise buyers did not learn to
change the cutoff sufficiently into the direction of the true best response, especially so given that belief learning receives
the largest weight in the buyer’s learning model (cf. Table 8). Fig. 5 provides an answer to this question. For each treatment,
this figure shows the buyer’s expected payoff and its volatility conditional on each possible cutoff level z, given the actual
average signal costs chosen by low-quality and high-quality sellers. It appears that the expected payoff functions are very flat
around 90, and in all treatments the profit at a cutoff level of 90 is close to the profit of the optimal cutoff level. Irrespective
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Fig. 5. Expected profit buyer as function of cutoff given actual behavior of sellers in periods 21–40.

of the amount of noise, the expected payoffs from belief learning thus provide hardly any pressure to change the original
cutoff level. Our experimental finding that the effect of noise on cutoff levels is (much) smoother than predicted by theory
lines up with experimental results in different games. For instance, Brandts and Figueras (2003) find that reputation building
increases with the fraction of honest bankers, but not as steeply as theory predicts. In a similar find Georganas and Nagel
(2011) find that previous ownership in a company varies less with takeover bids than predicted.

The learning model together with the flatness of the buyer’s expected profit functions also explains our important ex-
perimental finding that subjects separate even in treatment σ10 where the noise is so small that a pure strategy separating
equilibrium does not exist. As reported in Table 7, the actual average cutoff level buyers employ in this treatment is well
above the best response level: 96.2 versus 57.8. In periods 21–40 buyers actually earned on average 133.9 (at a standard
error of 157.6). If they would consistently have used the much lower optimal best response cutoff level of 57.8,29 their profit
would have been 141.8 (standard error 166.0). In the large majority of 95% of the cases, the optimal cutoff leads to exactly
the same choice and profit as the buyer actually made. In only 4% of the cases the optimal cutoff would have led to a
higher profit, while in 1% of the cases it would have led to a lower profit. The difference between the actual profit and the
optimal profit generated by a hypothetical cutoff strategy of 57.8 is not significant according to a Wilcoxon rank test using
all observations as data points (p = 0.15). Thus, as already indicated above, there was no noticeable pressure on buyers to
lower their cutoff. Given the high cutoff levels actually used by the buyers, it is no surprise that high-quality sellers con-
tinued to send messages with high signal costs. In fact, due to reinforcement learning being a significant behavioral driver
for sellers as well, their signal costs were even a bit lower than the actual best response (112.8 versus 117.9). In sum, the
non-equilibrium separation outcome materializes in σ10 because buyers employed higher cutoff levels than they should in
equilibrium, but were hardly punished for doing so, while sellers were close to best responding.

A potential concern is that the observed separation in σ10 is an artefact of the limited length of our sessions. To address
this concern, we used the estimates for treatment σ10 reported in Table 8 to simulate how play unfolds after period 10.
We calculated the averages of the actual signal costs employed by high and low type sellers and their respective variances,
and the average rejection rates by buyers in the first 10 periods.30 We used these data to create the history screen for the
first 10 periods. The learning model of both buyer and seller and the estimated parameters then determine how behavior

29 If buyers would have used this cutoff level of zBR = 57.8, the theoretical best response for the bad (good) type seller is to choose signal costs equal to
zero (81.34). So even in that case the bad type would not have an incentive to deviate from 0, i.e. to upset the separating outcome.
30 The sellers’ averages are reported in Table 9. The average rejection rates of buyers in the first 10 periods equal 94.67% for low-quality sellers and

12.89% for high-quality sellers.
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Table 9
Simulations learning model treatment σ10.

Simulation starts Quality seller Input: periods 1–10 Result: periods 501–1000

Like observed in
experiments

Signal cost low 8.5 (29.4) 13.8 (26.4)

Signal cost high 113.4 (27.6) 110.7 (2.6)

Hypothetical from
pooling

Signal cost low 0.0 (0.0) 11.6 (23.1)

Signal cost high 0.0 (0.0) 113.6 (3.4)

Remarks: The simulations employ the parameter estimates of treatment σ10 and project how play unfolds in 1000 periods. The upper part reports results
using the actual average signal cost chosen by high and low seller types (and their respective variances). The lower part reports results from a hypothetical
start from the pooling equilibrium. The simulation results are the averages of 50 runs with matching groups consisting of 16 sellers and 16 buyers each.

Fig. 6. Signal cost in simulations for typical matching groups. The upper panel presents results starting from a history screen like observed in the experi-
ments. The lower panel presents results starting from a (hypothetical) pooling outcome. High-quality signal costs are displayed by black dots, low-quality
signal costs by grey dots.

develops after period 10. The upper part of Table 9 presents the results of this exercise and the upper panel of Fig. 6 shows
the results of a typical matching group. The results clearly indicate that the separation outcome observed in treatment σ10
is a stable phenomenon. Even after 1000 periods high and low-quality sellers continue to separate in our simulations.

The lower part of Table 9 provides insight in how the simulation results depend on initial conditions. These simulations
are based on an artificial history screen where high- and low-quality sellers start choosing zero signal costs corresponding
to the pooling equilibrium (and the buyer’s initial acceptance rate is set equal to zero). Remarkably, with the estimated
parameters of the learning model simulated play rather quickly drifts toward the separating play observed in our experi-
ment. The reason behind this is that sellers’ and buyers’ initial behavior is noisy. Thus, some signal costs get accepted by
mistake. When this happens in the case that a high-quality seller accidentally employs a high signal cost, both the seller’s
and buyer’s behavior is reinforced. A similar incident with a low-quality seller is not reinforced. Thus, gradually high-quality
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Table 10
Seller profits conditional on signal and type (periods 21–40)

Low type High type

Pooling Separating Pooling Separating
SC < 90 SC � 90 SC < 90 SC � 90

σ0 −0.7 (7.0) −46.8 (46.3) −80.0 (0.0) 294.5 (60.2)

σ10 −0.9 (9.6) – 30.0 (200.0) 257.8 (100.6)

σ40 3.3 (24.6) −52.0 (37.0) 117.2 (206.3) 221.7 (119.1)

σ120 22.6 (40.4) −110 (0.0) 80.7 (170.2) 73.3 (189.8)

Remarks: The cells list average profits. Standard deviations (based on individual observations) in parentheses.

sellers learn to employ high signal costs, and buyers learn to accept high signals. The lower panel of Fig. 6 displays the
result of a typical matching group that starts from the pooling outcome.

Average (actual) profits also shed light on another main finding from our experiment, viz. which equilibrium organizes
the data best in treatments σ0, σ40 and σ120. In the introduction we hypothesized that sellers are less willing to pursue
the separating equilibrium when the noise increases. With noise, there is always a chance that a separating signal cost of
a high-quality seller is pushed below the cutoff of the buyer, in which case the seller incurs a loss. This becomes more
likely the higher the level of noise is. For instance, in σ40, the probability that the (equilibrium) separating signal cost of
the high-quality seller is not accepted equals 0.05. In σ120, the probability that a high-quality seller incurs a loss increases
to 0.23. At the same time, the equilibrium markup in case of a sale decreases from 258 in σ40 to 169 in σ120. Thus, for the
seller the prospects of the separating equilibrium deteriorate when the noise in the signal increases.

Average (actual) profits shed light on another main finding from our experiment, viz. which equilibrium organizes the
data best in treatments σ0, σ40 and σ120. In the introduction we hypothesized that sellers are less willing to pursue the
separating equilibrium when the noise increases. With noise, there is always a chance that a separating signal cost of a
high-quality seller is pushed below the cutoff of the buyer, in which case the seller incurs a loss. This becomes more likely
the higher the level of noise is. For instance, in σ40, the probability that the (equilibrium) separating signal cost of the high-
quality seller is not accepted equals 0.05. In σ120, the probability that a high-quality seller incurs a loss increases to 0.23.
At the same time, the equilibrium markup in case of a sale decreases from 258 in σ40 to 169 in σ120. Thus, for the seller
the prospects of the separating equilibrium deteriorate when the noise in the signal increases.

The actual profit data are in accordance with this explanation. For the treatments where a pooling and separating equi-
librium coexist as well as for treatment σ10 where this is not the case, Table 9 lists seller profits, separated for high types
and low types, and for pooling signals (< 90) and separating signals (� 90). For high-quality types, the attractiveness of
the separating equilibrium is highest in σ0. With noise the loss-gain tradeoff worsens, which favors pooling. In fact, for
σ120 high-quality sellers made on average slightly more when they selected pooling signal costs. This result agrees with the
earlier finding that in the end 6 of the 8 matching-groups in σ120 converged to pooling.

From Brandts and Holt (1992, 1993), Cooper et al. (1997a, 1997b) and our paper a unified picture emerges about how
people play signaling games. In all these papers, subjects start playing at their myopic optimum after which play unfolds in
accordance with adaptive learning dynamics. Brandts and Holt show that this process can lead to the unintuitive equilibrium
being played. In the context of a limit pricing game, Cooper et al. find that this process converges to the pooling equilibrium
if it exists. In our paper, this process reveals how Spence’s wasteful signaling result is saved for behavioral reasons even
when (a small amount of) noise in the receiver’s perception of the signal is introduced.

5. Conclusion

In this paper we introduced noise in Spence’s pure signaling game. Besides being more realistic, allowing for noise in
the signal is appealing because it substantially cuts down the number of equilibria. With an unfavorable prior belief, the
(pure strategy) separating equilibrium even completely disappears for low levels of noise. It reappears for intermediate noise
levels, where the (high type’s) signal costs increase with the noise in the signal up to a ceiling. In contrast, a pooling (on
no signaling) equilibrium always exists.

In our experiment, noise systematically affected the signal costs of high-quality sellers. High-quality sellers tended to aim
for separation. The signal costs of the sellers who opted for separation rose with the noise in the signaling technology. For
high noise levels, the separating equilibrium lost ground to the pooling equilibrium, though. With high noise, high-quality
sellers faced the risk that a signal cost aimed at separation would fail to accomplish its goal because it received a bad draw
for the noise term. In addition, with high noise higher signal costs were required to convince the buyer, which decreased the
markup in case of a sale. Thus, the separating equilibrium became much less attractive, which is reflected in the frequency
that it was chosen. We did, however, observe a couple of very high signal costs when the noise in the signal cost was high.
Noise thus adds to the explanation why in some real life cases wasteful signaling appears so excessive and prominent.

We observed a smoother pattern in the effect of noise on the signal cost than predicted by theory. Conditional on choos-
ing a separating level of signal costs, the signal costs of high-quality sellers increased monotonically with noise. Although
intuitive this is a remarkable empirical finding, because it means that subjects separated even in the case where no sepa-
rating equilibrium existed. It turns out that with little noise subjects initially played as if there were no noise. In particular,



JID:YGAME AID:1916 /FLA [m3G; v 1.52; Prn:13/05/2011; 14:52] P.21 (1-27)

T. de Haan et al. / Games and Economic Behavior ••• (••••) •••–••• 21
buyers used higher cutoffs than prescribed by equilibrium. The strategic nature of the game was such that there was negli-
gible pressure on buyers to change their initial behavior. Buyers almost made the same amount as they would have earned
with their best response and their best response hardly guided them to lower cutoffs. As a result, sellers did not have
an incentive to cease separating. Thus, separation did not unravel. A simple attraction learning model incorporating belief
learning, imitation and reinforcement, accounts for this intuitive anomaly.

We believe that the mechanisms identified in this paper are also relevant in the field. In some real life situations, senders
employ rather inexpensive signals. For instance, a GRE score is an almost perfect predictor of how well a student performs
in a PhD program. Notice that this is an example with only a very limited amount of noise in the signaling technology, so
that separating may not be supported in equilibrium. Still, students seem to separate successfully through their GRE scores,
just like our subjects in treatment σ10. In other cases, like advertising during the Super Bowl, or fighting for a fierce image
among the Yanomamö, senders use much more expensive signals with a possibly lower success rate. These examples differ
in many dimensions. One crucial dimension may be the signaling technology though. The task that directors of graduate
schools face when they interpret GRE scores seems easier compared to the task of average sports fans who interpret the
cost behind a Super Bowl commercial, or the task of Yanomamö women who distill a man’s fierceness from his scars.

Our results illustrate that in particular senders suffer from a malfunctioning signaling technology. They thus have the
largest incentive to improve the signaling technology. Endogenizing the noise in the receiver’s perception of the signal may
be an interesting avenue for future research.

Appendix A

In this appendix we formally derive the theoretical predictions discussed in Section 2. Recall that z = m + σ · ε, with z
the signal observed by the buyer, m the signal costs chosen by the seller and ε a random variable with distribution F . With
regard to F we make the following three assumptions:

(F.1) F is continuously differentiable, i.e. density f is continuous.
(F.2) The density f is strictly positive on the entire real line.
(F.3) The conditional density of z given m (denoted g(z | m)) satisfies the strict monotone likelihood ratio property (MLRP):

g(z|m)
g(z|m′) = 1

σ · f ( z−m
σ )

1
σ · f ( z−m′

σ )
is strictly increasing in z for m > m′ .

These three assumptions facilitate the equilibrium analysis. First, in the setup of both Matthews and Mirman (1983) and
Carlsson and Dasgupta (1997), MLRP implies that the receiver necessarily uses a cutoff strategy in equilibrium. Building
on their theoretical analysis, Lemma 1 below reveals that essentially the same result applies in our model where signal-
ing constitutes a pure social waste. Second, the three assumptions together also imply that f is ‘nicely’ shaped, see our
Lemma 2.

Lemma 1. Let μb(m) [μg(m)] denote the probability with which the bad [good] type seller chooses signal costs m in equilibrium.
Consider non-pooling equilibria only, i.e. μb(m) �= μg(m) for some m � 0. Assumptions (F.1) through (F.3) then imply that the buyer’s
best response rule is of the following form (with z∗ ∈ (−∞,+∞)):

π(z) =
{

0 if z < z∗

1 if z > z∗,
(A.1)

with π(z) the probability that the buyer ‘Buys’ after observing signal z.

Proof. To prove the lemma, we first show that the seller’s equilibrium strategy is weakly monotonic in his type. Using this
we subsequently show that the buyer’s equilibrium payoff from buying is monotonically increasing in the observed signal,
positive for large signals and negative for small signals.31

Let p(m | π(z)) = ∫
π(z) · 1

σ · f ( z−m
σ )dz denote the probability with which the buyer buys, given that she uses strategy

π(z) and the seller chooses signal cost m. For the type t ∈ {b, g} seller, expected payoffs then equal t · p(m | π(z)) − m.
Let Mt be the set of maximizers of this expected payoff function. This set is non-empty because f , and thus p(m | π(z)),
is continuous and the relevant range [0, t] of signal costs m is compact. Suppose there exists a m′

b ∈ Mb with m′
b > 0. It

then holds that g · [p(m′
b | π(z)) − p(m | π(z))] > b · [p(m′

b | π(z)) − p(m | π(z))] � m′
b − m for all m ∈ [0,m′

b). The second
inequality directly follows from m′

b ∈ Mb whereas the first follows from g > b. Thus, the good type strictly prefers m′
b > 0

over any lower level of signal costs. Because this holds for any m′
b > 0 in Mb , there exists a cutoff level mc � 0 such that

the bad (good) type necessarily chooses m � mc (m � mc) in equilibrium. The seller’s equilibrium strategy is thus weakly
monotonic.

The buyer’s expected payoffs of buying when she observes signal z and the seller plays (μb,μg) equal V (z | (μb,μg)) =
−y + [x + y] · β(z). Here β(z) denotes the buyer’s posterior belief that the seller is of the good type after observing signal

31 The proof is in the spirit of Lemmas 1 and 2 in Matthews and Mirman (1983). Because they do not consider mixed strategies, however, our proof more
closely follows the one of Proposition 3.1 in Carlsson and Dasgupta (1997).
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z and given that the seller uses strategy (μb,μg). By Assumption (F.2) this belief is determined by Bayes’ rule everywhere:

β(z) ≡ Pr
(
t = good

∣∣ z, (μb,μg)
)

= p · ∫ f ( z−m
σ ) · μg(m)dm

p · ∫ f ( z−m
σ ) · μg(m)dm + (1 − p) · ∫ f ( z−m

σ ) · μb(m)dm
(A.2)

Given that f is continuous it follows that β(z) is continuous in z. Moreover, if μb(m) �= μg(m) for some m � 0, MLRP
together with the weak monotonicity of the seller’s strategy imply that β(z) is strictly increasing in z (cf. Milgrom, 1981,
Proposition 2).32 This in turn implies that the buyer’s expected payoffs V (z | (μb,μg)) are continuous and strictly increasing
in z. Suppose V (z | (μb,μg)) > [<]0 for all z. Then the buyer always [never] buys irrespective of the value of z and
both seller types would strictly prefer m = 0. This contradicts μb �= μg . Hence there is a unique solution z∗ to V (z |
(μb,μg)) = 0. �
Lemma 2. Assumptions (F.1) through (F.3) imply that f (u) is uni-modal and strictly increasing [decreasing] in u for u < [>]M, with
M denoting the mode.

Proof. Let c1 < c3. We first show that f (c) > min{ f (c1), f (c3)} for all c ∈ (c1, c3). Suppose not. Then by the continuity of
f there exists a c2 ∈ (c1, c3) for which f (c2) � f (c) for all c ∈ [c1, c3] (i.e. c2 is an interior global minimum of f on the
compact set [c1, c3]). Assumption (F.1) then also implies that there exists a �c � min{c3 − c2, c2 − c1} (with �c > 0) such
that f (c2 −�c) � f (c2) and f (c2 +�c) � f (c2). Pick zh and m′ such that zh −m′ = σ(c2 +�c), and take zl = σ c2 +m′ and

m = m′ + σ�c. Then
f (

zh−m
σ )

f (
zh−m′

σ )
= f (c2)

f (c2+�c) � f (c2−�c)
f (c2)

= f (
zl−m

σ )

f (
zl−m′

σ )
. This contradicts that g(z | m) satisfies MLRP.

Given that f is continuous and strictly positive on R it follows that f cannot be monotonically increasing; otherwise∫ ∞
c1

f (u)du >
∫ ∞

c1
f (c1)du = ∞, contradicting that f is a density. Together with f (c) > min{ f (c1), f (c3)} for all c ∈ (c1, c3)

it follows that f is uni-modal. �
Assuming that players are restricted to use pure strategies only, Theorem 1 below characterizes the set of possible

equilibria. Proposition 1 in the main text directly follows from this theorem.

Theorem 1. Assume that players are restricted to use pure strategies.

(i) A pooling equilibrium in which both seller types choose m = 0 always exists. In this equilibrium the buyer never [always] buys
when p < [>]β∗ ≡ y

x+y . Pooling on some m > 0 cannot occur.

(ii) Generically, i.e. for all p �= β∗·g
(1−β∗)·b+β∗·g , it holds that in any separating equilibrium the bad type seller chooses m = 0 whereas

the good type chooses some positive level of signal costs m =mg > 0.
The buyer buys if z > z∗ and refrains from buying otherwise. Necessary and sufficient conditions for ((0,mg); z∗) to constitute
equilibrium strategies are:

g

σ
· f

(
z∗ − mg

σ

)
= 1 with mg > z∗ − σ M (A.3)

1

σ
· f

(
z∗

σ

)
= p · (1 − β∗)

β∗ · (1 − p)
· 1

g
(A.4)

b ·
(

F

(
z∗

σ

)
− F

(
z∗ − mb

σ

))
� mb for mb > z∗ − σ M that solves b

σ · f ( z∗−mb
σ ) = 1, (A.5)

g ·
(

F

(
z∗

σ

)
− F

(
z∗ − mg

σ

))
� mg (A.6)

32 To see this directly, note that the sign of ∂β(z)
∂z equals the sign of ∂l(z)

∂z , with l(z) equal to:

l(z) ≡ p · ∫ f ( z−m
σ ) · μg(m)dm

(1 − p) · ∫ f ( z−m
σ ) · μb(m)dm

=
p · ∫ [ f ( z−m

σ )

f ( z−mc
σ )

] · μg(m)dm

(1 − p) · ∫ [ f ( z−m
σ )

f ( z−mc
σ )

] · μb(m)dm

The second equality simply follows from dividing both numerator and denominator by f ( z−mc

σ ), with mc defined in the main text. By MLRP, the numerator
is strictly increasing in z whenever there exists a m > mc for which μg (m) > 0. Similarly so, the denominator is strictly decreasing in z if there exists a
m < mc for which μb(m) > 0. Hence l(z) is strictly increasing in z whenever μb �= μg .
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Proof. (i) For any pooling strategy it follows from (A.2) that the buyer’s posterior belief equals her prior belief for any signal
z observed; β(z) = p ∀z. Therefore, if p · x − (1 − p) · y > 0, i.e. p > β∗ ≡ y

x+y , the buyer buys for sure and neither type of
seller wants to spend positive signaling costs. Similarly, in case p < β∗ the buyer never buys and the seller’s unique best
response is m = 0. Only in the knife-edge case p = β∗ the buyer is indifferent and her probability of buying π(z) may vary
with z. For the type t seller (with t ∈ {b, g}) to be willing to choose some m > 0 it must then hold that t · ∂ p(m|π(z))

∂m = 1,

where p(m | π(z)) = ∫
π(z) · 1

σ · f ( z−m
σ )dz denotes the probability of trade, given buyer’s strategy π(z) and the seller

choosing signal costs m.33 With b < g this first order condition cannot hold simultaneously for both types, so pooling on
some m > 0 cannot occur.

(ii) From Lemma 1 it follows that in any non-pooling equilibrium the buyer necessarily uses a cutoff strategy like in (A.1).
The expected payoff of choosing m for the type t seller then equals t · (1 − F ( z∗−m

σ )) − m. Hence the following necessary
first order condition for an interior maximum:

t

σ
· f

(
z∗ − m

σ

)
= 1 (A.7)

The l.h.s. (r.h.s.) equals the marginal benefits (costs) of raising m. With b < g , for given m condition (A.7) cannot hold
simultaneously for both types. The two seller types thus never put positive probability on the same m > 0 in equilibrium.

From Lemma 2 it follows that (A.7) allows at most two solutions. If so, only the largest one satisfies the second order
condition, because at the optimum f should be increasing. (If f is decreasing, an increase in m at the margin increases
the marginal benefits of raising m further.) Therefore, necessarily z∗−mt

σ < M . In equilibrium the type t seller thus chooses
between the two levels m = 0 and mt > z∗ − σ M satisfying (A.7) only.

We next show that the bad type seller necessarily chooses m = 0. Suppose to the contrary that he chooses mb > 0.
This requires that mb yields the bad type weakly more than m = 0 does. Given g > b the good type then already strictly
earns more by choosing mb rather than m = 0, so certainly this is the case for signal costs equal to mg . Hence for all levels
of signal costs chosen in equilibrium first order condition (A.7) holds. From Bayes’ rule in (A.2) we then obtain that after
observing cutoff signal z∗ , the buyer’s posterior belief equals:

β
(
z∗) = p · 1

g

p · 1
g + (1 − p) · 1

b

= p · b

p · b + (1 − p) · g

Because β(z) is continuous in z, it necessarily must be such that the buyer is indifferent between her two actions after
observing cutoff signal z∗ (cf. Carlsson and Dasgupta, 1997):

β
(
z∗) = β∗ ≡ y

x + y
(A.8)

Since generically p·b
p·b+(1−p)·g �= y

x+y , an equilibrium in which neither type chooses m = 0 cannot exist. Therefore, the bad
type seller necessarily chooses m = 0.

Only two possible types of pure strategy equilibria remain: (1) both seller types choose m = 0 (cf. case (i)), and (2) the
bad type chooses m = 0 whereas the good type chooses mg > 0 satisfying (A.3). Consider the latter case. From (A.2) and
(A.3) we obtain that:

β
(
z∗) = p

p + (1 − p) · g · 1
σ · f ( z∗

σ )

Together with requirement (A.8) then equality (A.4) follows. Note that generically, this latter equality has either two, or zero
solutions (cf. Lemma 2).

Given cutoff z∗ implicitly defined in (A.4), the bad type seller should not have an incentive to deviate from m = 0. The
best candidate deviation level of signal costs mb necessarily satisfies first order condition (A.7) and mb > z∗ − σ M as well.
This level mb should give the bad type seller weakly less than choosing m = 0, i.e.:

b ·
(

1 − F

(
z∗

σ

))
� b ·

(
1 − F

(
z∗ − mb

σ

))
− mb

Rewriting this yields requirement (A.5). (From Lemma 2 it follows that only when b
σ · f ( z∗

σ ) < 1 no mb > z∗ − σ M exists
that solves the first order condition (A.7); in that case condition (A.5) is automatically satisfied.) Similarly so, the good type
seller should (weakly) prefer choosing mg > 0 over no signal costs at all. This is what condition (A.6) requires. �

The actual existence of a separating equilibrium depends on whether expressions (A.3) through (A.6) in Theorem 1 allow
a feasible solution. Theorem 2 below, which generalizes Proposition 2 in the main text to general distribution functions F ,

33 By Assumption (F.1) ∂ p(m|π(z))
∂m does exist. In fact, ∂ p(m|π(z))

∂m = ∫ 1
σ · f ( z−m

σ )dπ(z), see Carlsson and Dasgupta (1997, fn. 8).
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in particular considers how this varies with the value of σ . For the situation in which the level of noise becomes small, the
following lemma will appear helpful in proving this theorem. In words it says that the tails of density f (u) become ‘thin’
if we move sufficiently far away from the mode M (see part (a)). As a consequence, we should stay sufficiently close to the
mode M if we want f (u) to equal a particular given value v (cf. part (b)).

Lemma 3. Assumptions (F.1) through (F.3) imply that:

(a) ∀k>0 ∃U (k)>0 such that f (|u|) � k
|u| for all |u| � U (k).

(b) Let f −1+ ( f −1− ) denote the inverse of f (u) on the interval u � M (u � M), with M the mode of f (u).34 It holds that: ∀k>0 ∃V (k)>0

such that − k
v � f −1− (v) � M � f −1+ (v) � k

v for all v satisfying 0 < v � V (k).

Proof. (a) First consider the case u > 0. Let D ≡ {u | f (u) = k
u } denote the set of intersection points of f (u) and h(u;k) ≡ k

u .
First suppose that this set is bounded (which includes the case that D is empty), i.e. ∃U (k)>0 such that u � U (k) for all
u ∈ D . Then by the continuity of f and h(u;k) on (0,∞), for all u > U (k) either f (u) > k

u or f (u) < k
u . Now the former

would imply:

∞∫
U (k)

f (u)du >

∞∫
U (k)

k

u
du = k ·

(
lim

u→∞ ln u − ln U (k)
)

= ∞

This contradicts
∫ ∞

U (k)
f (u)du � 1 given that f is a density. Hence it must hold that f (u) < k

u for all u > U (k).

Next assume that the set of intersection points D is unbounded. Let u1, u3 ∈ D with u1 < u3 and f (u) < k
u for all u

satisfying u1 < u < u3. Such u1 and u3 do exist when D is unbounded, because otherwise f (u) � k
u for all u � u1 and∫ ∞

u1
f (u)du = ∞, a contradiction. Define u2 ≡ u1+u3

2 . MLRP then requires f (u1)
f (u2)

<
f (u2)
f (u3)

.35 Given u1, u3 ∈ D this becomes
k2

u1·u3
< [ f (u2)]2. From f (u2) < k

u2
this can only be satisfied whenever k2

u1·u3
< k2

u2
2

, i.e. (
u1+u3

2 )2 < u1 · u3. Rewriting this we

get (u1 − u3)
2 < 0, a contradiction. Hence D cannot be unbounded.

The case u < 0 is simply the mirror image of u > 0 and thus immediately follows from the above.
(b) This part follows from part (a). To see this, consider the case u � M . Here f – and thus f −1+ – is decreasing. Let

U (k) > 0 be the cutoff value as given in part (a), i.e. f (u) � k
u for all u � U (k). Consider values v � f (U (k)) ≡ V (k). From

f −1+ decreasing it follows that for all these values f −1+ (v) � f −1+ ( f (U (k))) = U (k). Now suppose there exists a v ′ with
0 < v ′ � V (k) for which f −1+ (v ′) > k

v ′ . Given that function h(u;k) ≡ k
u is strictly decreasing, it holds that h( f −1+ (v ′);k) <

h( k
v ′ ;k) = v ′ = f ( f −1+ (v ′)). So, at point f −1+ (v ′) function f (u) lies above function h(u;k). Together with f −1+ (v ′) � U (k)

this contradicts part (a). Hence necessarily f −1+ (v) � k
v for all v satisfying 0 < v � V (k). (Note that M � f −1+ (v) follows by

definition.) Again, the case u � M is the mirror image of u � M . �
Theorem 2. Assume that players are restricted to use pure strategies. A necessary condition for a separating equilibrium to exist is that
σ � g · f (M) · min{ (1−p)β∗

p(1−β∗)
,1} ≡ σ . Assuming σ � σ , it holds that:

(i) p � β∗: a separating equilibrium does not exist if σ becomes sufficiently small.
(ii) β∗ < p <

β∗·g
(1−β∗)·b+β∗·g : a separating equilibrium always exists. For this equilibrium it holds that limσ↓0 mg = 0.

(iii) p >
β∗·g

(1−β∗)·b+β∗·g : a separating equilibrium does not exist.

Proof. When σ > σ either (A.3) or (A.4) in Theorem 1 does not have a solution, so a separating equilibrium cannot exist.
Therefore, σ � σ is a necessary condition.

Before proving (i) through (iii) separately, we first show that limσ↓0 z∗ = limσ↓0 mg = limσ↓0 mb = 0 (with mb the

solution to (A.7) for t = b). Consider the defining equation (A.4) of z∗ and let c = p·(1−β∗)
β∗·(1−p)

· 1
g . From Lemma 2 it follows

that (generically) this equation has either two or no solutions. For σ low enough, (A.4) admits two solutions. Denote these

solutions z∗
l and z∗

h respectively, with z∗
l < z∗

h . Note that necessarily
z∗

l
σ < M and

z∗
h
σ > M . First consider the latter solution z∗

h .

With f −1+ denoting the inverse of f on the interval above M , we obtain z∗
h = σ · f −1+ (σ c) from (A.4). From Lemma 3(b) it

then follows that for all σ satisfying 0 < σ � V (k)

c ≡ σ(k; c), necessarily f −1+ (σ c) � k
σ c . Hence z∗

h = σ · f −1+ (σ c) � σ · k
σ c = k

c
for all σ � σ(k; c). Because this holds for any arbitrary k > 0, and z∗

h > σ M , we obtain limσ↓0 z∗
h = 0.

34 Given that f is monotonically increasing below M and monotonically decreasing above M (cf. Lemma 2), these inverses do exist.
35 To see this, pick zh and m′ such that zh − m′ = σu3. Then let zl = σu2 + m′ and m = m′ + σ(u2 − u1). This gives zh−m′

σ = u3, zh−m
σ = u2 = zl−m′

σ and
zl−m

σ = u1. The requirement then follows from MLRP.
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Next consider a solution z∗
l to (A.4) for which

z∗
l
σ < M . In this case z∗

l = σ · f −1− (σ c) from (A.4), with f −1− the inverse of

f on the interval below M . From Lemma 3(b) it then follows that for all σ � V (k)

c ≡ σ(k; c), necessarily f −1− (σ c) � − k
σ c .

Hence z∗
l = σ · f −1− (σ c) � − k

c for all σ � σ(k; c). Because this holds for any arbitrary k > 0, and z∗
l < σ M , we obtain limσ↓0

z∗
l = 0. Hence, overall limσ↓0 z∗ = 0 for any solution z∗ to (A.4).

By inserting z∗
l = z∗ − mg and c = 1

g in the reasoning for z∗
l above we immediately obtain limσ↓0(z∗ − mg) = 0 from

Eq. (A.3). Together with limσ↓0 z∗ = 0 this implies limσ↓0 mg = 0. Similarly so for limσ↓0 mb = 0.

(i) Inequality p � β∗ is equivalent to p·(1−β∗)
β∗·(1−p)

· 1
g � 1

g . From conditions (A.3) and (A.4) in Theorem 1 we obtain that

f (
z∗−mg

σ ) � f ( z∗
σ ) necessarily. Together with Lemma 2 this implies that necessarily z∗

σ > M. Hence in this case only a
separating equilibrium based on z∗

h may exist. We show that this separating equilibrium disappears for σ sufficiently small,
because the bad type seller obtains an incentive to deviate from m = 0 to a positive level of signal costs equal to mb . To

see this, from equality (A.4) we have that limσ↓0 f (
z∗

h
σ ) = 0. With Lemma 2 and

z∗
h
σ > M this in turn implies that limσ↓0

z∗
h
σ = ∞. Taking the limit in the l.h.s. of condition (A.5) we then obtain that:

lim
σ↓0

b ·
(

F

(
z∗

h

σ

)
− F

(
z∗

h − mb

σ

))
= b > 0

Here limσ↓0
z∗

h−mb

σ = −∞ (and thus limσ↓0 F (
z∗

h−mb

σ ) = 0) follows from the fact that mb satisfies both first order condition

(A.7) and mb > z∗
h − σ M (such that

z∗
h−mb

σ < M). Because limσ↓0 mb = 0 as derived above, requirement (A.5) cannot be
satisfied for σ sufficiently small.

(ii) When β∗ < p <
β∗·g

(1−β∗)·b+β∗·g separating equilibria based on z∗
l and z∗

h may exist side by side. The one based on
z∗

h vanishes for low σ , see the proof of part (i). We show that the one based on z∗
l continues to exist under the stated

conditions. Note that when σ � σ , condition (A.4) allows a solution z∗
l � σ M . Given this solution z∗

l and p(1−β∗)
(1−p)β∗ > 1 from

β∗ < p, we can always find a corresponding solution mg to (A.3). Because p <
β∗·g

(1−β∗)·b+β∗·g , it follows from (A.4) that
b
σ · f (

z∗
l
σ ) = b

g · p(1−β∗)
(1−p)β∗ < 1. This implies that condition (A.5) is automatically satisfied, because no mb > z∗ − σ M exists that

satisfies the first order condition (A.7) (see the proof of Theorem 1). Moreover, from (A.3) and Lemma 2 we have:

g ·
(

F

(
z∗

l

σ

)
− F

(
z∗

l − mg

σ

))
= g ·

z∗
l∫

z∗
l −mg

1

σ
· f

(
u

σ

)
du > g ·

z∗
l∫

z∗
l −mg

1

g
du = mg

Hence condition (A.6) is satisfied as well.
(iii) In case p >

β∗·g
(1−β∗)·b+β∗·g , (A.4) implies that b

σ · f ( z∗
σ ) = b

g · p(1−β∗)
(1−p)β∗ > 1. At m = 0 the marginal benefits for the bad

type of raising the signal costs thus exceed the marginal costs of doing so and he wants to deviate from choosing m = 0.
That is, condition (A.5) cannot be satisfied. �

The non-existence of a separating equilibrium in cases (i) and (iii) is based on the same intuition. Eq. (A.4) in Theorem 1
provides a precise characterization of the buyer’s equilibrium cutoff value z∗ on the basis of her posterior beliefs. But
the feasible value(s) of z∗ may be incompatible with seller’s best response behavior given the buyer’s cutoff strategy. In
particular, no-deviation condition (A.5) for the bad type seller may not be satisfied for the value(s) of z∗ that solve (A.4).
He thus obtains an incentive to deviate from m = 0.

We finally turn to mixed strategy equilibria. Theorem 3 below characterizes the set of mixed strategy equilibria that
potentially may exist.

Theorem 3. When players are allowed to use mixed strategies, only two additional types of (mixed strategy) equilibria may potentially
exist:

(i) The bad type chooses m = 0 with probability 1 − qb and some mb > 0 with probability qb, whereas the good type chooses some
mg � mb for sure. A necessary condition for existence is: p <

β∗·g
(1−β∗)·b+β∗·g . Conditional on existence it holds that: limσ↓0 z∗ =

limσ↓0 mb = limσ↓0 mg = b and limσ↓0 qb = (1−β∗)·p
(1−p)·β∗ · b

g ≡ q0.

(ii) The bad type chooses m = 0 for sure while the good type chooses m = 0 with probability 1 − qg and some mg > 0 with proba-
bility qg . A necessary condition for existence is: p < β∗ . Conditional on existence it holds that: limσ↓0 z∗ = limσ↓0 mg = g and
limσ↓0 qg = 0.

Proof. From the proof of Theorem 1 we obtain the following three observations: (1) in equilibrium the type t seller chooses
between the two levels of signal costs m = 0 and mt > z∗ − σ M satisfying (A.7) only, (2) the bad type seller necessarily
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puts positive probability on m = 0, and (3) if the bad type puts positive probability on mb > 0 as well, the good type strictly
prefers level mg � mb over m = 0 and thus chooses mg for sure. Together these three observations imply that only mixed
strategy equilibria of types (i) and (ii) may potentially exist. The remainder of the proof characterizes these mixed equilibria
in more detail and considers the limit equilibria of letting σ become infinitely small.

First note that in a mixed equilibrium it necessarily holds that z∗ > σ M . Suppose z∗ � σ M . Then f ( z∗−m
σ ) < f ( z∗

σ )

by Lemma 2 and neither type wants to mix between 0 and m (at m marginal benefits equal marginal costs, so at all
inframarginal levels below m marginal benefits exceed marginal costs).

(i) Equilibrium values of z∗,mb,mg and qb are characterized by the following four equations:

b

σ
· f

(
z∗ − mb

σ

)
= 1 with mb > z∗ − σ M (A.9)

g

σ
· f

(
z∗ − mg

σ

)
= 1 with mg > z∗ − σ M (A.10)

b

σ
· f

(
z∗

σ

)
= (1 − β∗) · p · b − β∗ · (1 − p) · g · qb

β∗ · (1 − qb) · (1 − p) · g
with z∗ > σ M (A.11)

b ·
(

F

(
z∗

σ

)
− F

(
z∗ − mb

σ

))
= mb (A.12)

Given the last condition, no-deviation requirement (A.6) for the good type is automatically satisfied. Existence depends
on whether (A.9) through (A.12) admit a feasible solution. Because these are four non-linear equations (in four unknowns),
it is in general hard to determine whether a solution exists. We therefore look at the equilibrium properties when σ

becomes small, assuming the mixed strategy equilibrium to exist. The latter requires necessarily (1−β∗)·p·b−β∗·(1−p)·g·qb
β∗·(1−qb)·(1−p)·g < 1,

for otherwise f ( z∗−mb
σ ) < f ( z∗

σ ) and the bad type does not want to mix. This reduces to p <
β∗·g

(1−β∗)·b+β∗·g . Because f > 0,

from (A.11) it follows that qb <
(1−β∗)·p
(1−p)·β∗ · b

g ≡ q0 necessarily. (Note that for p <
β∗·g

(1−β∗)·b+β∗·g it holds that q0 < 1.)
From (A.9) and (A.10) it follows that limσ↓0 (z∗ − mb) = limσ↓0(z∗ − mg) = 0, see the proof of Theorem 2. Moreover,

equality (A.12) implies limσ↓0 mb = b. Together, limσ↓0 z∗ = limσ↓0 mb = limσ↓0 mg = b. Now suppose limσ↓0 qb �= q0. Then

there exists some r < q0 such that qb � r for some subsequence σr ↓ 0. Let zr solve b
σ · f ( zr

σ ) = (1−β∗)·p·b−β∗·(1−p)·g·r
β∗·(1−r)·(1−p)·g ≡ k(r).

From the proof of Theorem 2 it follows that limσ↓0 zr = 0. With k(r) decreasing in r (given p <
β∗·g

(1−β∗)·b+β∗·g ) and f ( z
σ )

decreasing in z for z > σ M (cf. Lemma 2), it follows that z∗ � zr for all σr ↓ 0, and thus z∗ → 0 along this subsequence.
This contradicts limσ↓0 z∗ = b > 0. Hence necessarily limσ↓0 qb = q0.

(ii) In this case equilibrium values of z∗ , mg and qg are characterized by the following three equations:

g

σ
· f

(
z∗ − mg

σ

)
= 1 with mg > z∗ − σ M (A.13)

g

σ
· f

(
z∗

σ

)
= (1 − β∗) · p · qg

(β∗ − p) + (1 − β∗) · p · qg
with z∗ > σ M (A.14)

g ·
(

F

(
z∗

σ

)
− F

(
z∗ − mg

σ

))
= mg (A.15)

Given (A.15), requirement (A.5) for the bad type seller is satisfied. We again look at the equilibrium properties for low values

of σ , assuming the mixed strategy equilibrium to exist. This requires (1−β∗)·p·qg
(β∗−p)+(1−β∗)·p·qg

< 1, for otherwise f (
z∗−mg

σ ) < f ( z∗
σ )

and the good type does not want to mix. Therefore p < β∗ is needed.

From (A.13) it follows that limσ↓0
z∗−mg

σ = −∞ and limσ↓0(z∗ −mg) = 0, see the proof of Theorem 2. Because the r.h.s. of

(A.14) is bounded from above by (1−β∗)·p
(1−p)·β∗ , the l.h.s. is bounded as well. This implies limσ↓0 f ( z∗

σ ) = 0 and thus limσ↓0
z∗
σ =

∞. Together with equality (A.15) we obtain limσ↓0 mg = g , and thus limσ↓0 z∗ = g as well. Now suppose limσ↓0 qg �= 0.

Then there exists some r > 0 such that qg � r for some subsequence σr ↓ 0. Let zr solve g
σ · f ( zr

σ ) = (1−β∗)·p·r
(β∗−p)+(1−β∗)·p·r ≡ l(r).

From the proof of Theorem 2 it follows that limσ↓0 zr = 0. With l(r) increasing in r and f ( z
σ ) decreasing in z for z > σ M (cf.

Lemma 2), it follows that z∗ � zr for all σr ↓ 0, and thus z∗ → 0 along this subsequence. This contradicts limσ↓0 z∗ = g > 0.
Hence necessarily limσ↓0 qg = 0. �

Theorem 3 reveals that whenever an equilibrium exists in which the good seller type mixes, this equilibrium converges
to the pooling on m = 0 equilibrium when the noise becomes small. The other equilibrium in which the bad type mixes
converges to a mixed equilibrium that is insufficiently revealing; the bad type chooses m = b with probability q0 and
m = 0 otherwise, while the good type chooses m = b for sure. Upon receiving message b the buyer then decides to buy.
Interestingly, Theorems 2 and 3 together reveal that for a very favorable prior, only pooling on m = 0 can occur. Some
amount of noise thus precludes informative signaling altogether in this case.
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Appendix B. Supplementary material

The online version of this article contains additional supplementary material.
Please visit doi:10.1016/j.geb.2011.04.006.
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