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Appendix A - Quantal Response Equilibrium 

In this appendix, we describe how one can derive the QRE for our voting game. To find the 

QRE, we first consider the expected utility derived from voting for distinct options. Take, for 

example, voter i with preference ordering (A,B,C). The expected payoff from voting for A, 

e

Au , depends on what other voters do. It is a function of the probabilities with which other 

voters vote for the three options. Similarly, the expected utility from voting for B and C, e

Bu  

and e

Cu , depend on these probabilities. Nash equilibrium analysis assumes that i will vote for 

the alternative that gives her the highest expected utility, i.e., she gives the best response to 

others’ probabilities.  

In contrast, a QRE analysis allows i to make errors in the vote decision. One way to do 

this is by adding a stochastic term to the expected utility functions, yielding expected utilities 

e

A Au   , e

B Bu   , and e

C Cu    for A, B, and C, respectively. In these terms,  > 0 is an 

error parameter and the  terms are i.i.d. realizations of random variables. This parameteriza-

tion is general enough to capture different sources of noise, such as distractions, perception 

biases, miscalculations or limited computational capability (Goeree and Holt, 2005).  

A voter will still vote for the option with the highest expected utility but this is now a 

stochastic event. For example, she will vote for A if e

A Au   > e

B Bu    and e

A Au   > 

e

C Cu    or  

e e

A B
B A

u u
  


 and 

e e

A C
C A

u u
  


      (A1) 

Specification of the distribution functions of A, B, C yields the probability that i will vote for 

option A (and similarly for B or C). Assuming that the ’s follow the extreme value type 1 

distribution, the (multinomial) probability that i will vote for option j, i

jp ,  is given by:  

, ,

exp[ / ]
, , , .

exp[ / ]

e

ji

j e

l

l A B C

u
p j A B C

u






 


      (A2) 

Next, recall that the probabilities of other voters choosing A, B, or C enter the expected utility 

terms in the right hand side (r.h.s.) of (A2). A full specification for all voters then equates a 

vector of (3N) voting probabilities on the left hand side (l.h.s.) to a vector of functions of the 

same probabilities on the r.h.s.. A QRE (specifically, a ‘multinomial’ logit equilibrium, MLE) 

is defined as a vector of probabilities that when entered on the r.h.s. yields itself on the l.h.s.  
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Here, the MLE depends on , u
m
, NABC, NBCA, and NCAB, and on whether or not voters 

know the latter three numbers. To understand the role of the error parameter , note that  

0

0, max{ }
lim

1, max{ } ,

e e

j k
i k

j e e e e

j k l j
k

if u u
p

if u u and u u l j

 


 
  

     (A3) 

(and 
0

lim i

jp


 is 1/K if K options (K=2,3) yield equal maximum expected utility).  

It follows directly from (A3) that as noise diminishes to zero, the option with the highest 

expected utility is chosen, i.e., the MLE converges to a Nash equilibrium (see McKelvey and 

Palfrey 1995). Similarly, 

1
lim , , , ,

3

i

jp j A B C


          (A4) 

which shows that behavior converges to pure randomization as noise increases to infinity.  

One can compute MLE for any positive and finite value of . We call the set of MLE and 

correspondent ’s the ‘Multinomial Logit Correspondence’ (MLC). Except for the limit case 

where  approaches infinity, there need not be a unique MLE. One can, however, identify a 

unique branch of the MLC that starts from the limit at   =  and continuously converges to a 

unique Nash Equilibrium as   0 (McKelvey and Palfrey, 1995). This is called the ‘Principal 

Branch’ and the corresponding Nash Equilibrium the ‘limiting MLE’ of the game.
1
 In this 

way, one can use the principal branch of the MLC as a selection device for the set of Nash 

equilibria. Though other equilibria may also be limits of the MLE correspondence, the 

selection by the principal branch is generally unique.
2
  

Using the Quantal Response model with the multinomial logit specification has several 

advantages: (i) it provides a refinement selecting precisely one of the multiple Nash equilibria 

(i.e., the limiting MLE); (ii) it takes bounded rationality seriously by introducing noise in the 

individual choice problem; (iii) the principal branch has the intuitive characteristic that 

players of the same type play symmetric strategies; (iv) in line with intuition, for all finite  

the MLE probability of choosing an option is increasing in the expected payoff differences 

with other options. The expected payoff difference will vary with the extent of information 

                                                         
1
 Except for very special cases, the principal branch needs to be computed numerically. In order to trace it we 

use the Homotopy Approach as outlined by Turocy (2005, 2010). 
2 The few cases where the principal branch is not unique are due to backward bending portions of the 
branch. For these, we select equilibria based on a ‘first-pass’ rule. In the “first-pass” criteria we select the 
first equilibrium computed on any given μ when tracing the correspondence from μ =  to μ = 0. The 
intuitive reasoning is that if any learning process applies, it is more reasonable to assume that it moves 
from more to less noisy behavior then the other way around. For more details see appendix C. 
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and the realized distribution
3
 but it only includes situations where the voter’s choice makes a 

difference, since for every non-pivotal situation the payoff difference will be 0. 

This last point can be illustrated with an example. As can be easily seen, the r.h.s. of (A2) 

can be rewritten in terms of expected payoff differences, taking voting sincerely as the refe-

rence strategy. For example, for a voter with preference ordering (A,B,C), we write: 

   
1

1 exp / exp /

i

A e e e e

B A C A

p
u u u u 


      
   

 

 

   

exp /

1 exp / exp /

e e

B Ai

B e e e e

B A C A

u u
p

u u u u



 

 
 

      
   

    (A5) 

 
 

   

exp /
.

1 exp / exp /

e e

C Ai

C e e e e

B A C A

u u
p

u u u u



 

 
 

      
   

 

The expected utility difference of voting for option j instead of k e e

j ku u , is a weighted sum of 

the utility differences between voting for j or k for all possible combinations of votes by other 

voters (denote by −i): ( )
j

e e i i

j k i k

i

u u P u u 





   , where P-i denotes the probability that a 

particular configuration of other voters’ choices occurs and i

ju ( i

ku ) gives the expected utility 

obtained from choosing j (k) in situation −i. Though there are an extreme number of situations 

–i, for most of them i’s vote will not affect the outcome. In those situations, i i

j ku u  so they 

do not add to the expected utility difference. Therefore, in (A5) the voter takes into account 

only the relevant pivotal situations. An important consequence is that the probabilities in (A5) 

converge to 1/3 as the electorate becomes infinitely large. The intuition is that for infinitely 

large electorates it no longer matters what any single voter does, and random noise dominates 

the voter’s choice. We will further discuss this, below. For details see appendix C. 

                                                         
3 See appendix B for details of the computations. 
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Appendix B  - Voting probabilities in the MLE 

In this appendix we show how the probabilities of voting for various options depends on the 

probabilities of being pivotal in various situations and how this yields the conclusion that 

these probabilities converge to 1/3 as the size of the electorate increases to infinity. 

The (multinomial) probability that a voter i with preference ordering (A,B,C) will vote 

for option j=A,B,C,, is denoted by i

jp ,  and given by (A5), which we summarize by 

 

   

exp /

1 exp / exp /

e e

j Ai

j e e e e

B A C A

u u
p

u u u u



 

 
 

      
   

   ,  j=A,B,C      (B1)  

Recall that the expected utility difference of voting for j instead of k, e e

j ku u  is a weighted 

sum of the utility differences between voting for j or k for all possible combinations of votes 

by other voters (−i). For example: 

( )e e i i

A B i A B

i

u u P u u 





          (B2) 

where P-i denotes the probability that a particular configuration of other voters’ choices 

occurs and i

ju ( i

ku ) gives the utility obtained from choosing j (k). A configuration of other 

voters’ choices depends on the configuration of their preferences and on their choices 

conditional on their preferences.  

There are 
1

2

N  
 
 

 possible preference configurations for other voters. Each will take 

the form (N−1ABC, N−1BCA, N−1CAB), and will occur with (multinomial) probability: 

     , , , , , ,

( 1)

( 1 , 1 , 1 )

, , , , , ,

( 1)! 1

31 ! 1 ! 1 !A B C B C A C A B

N

N N N

A B C B C A C A B

N
P

N N N



  

  
  

    
 (B3) 

In each of these, the probabilities of various configurations of the others’ votes depends on 

their strategies, i.e., the probabilities with which they vote for A, B, or C.  These then 

determine the probabilities that i will be pivotal. For all non-pivotal situations,    i i i

A B Cu u u . 



6 
 

It follows directly from (B2) that only pivotal probabilities are relevant in determining the 

expected utility differences in (B1). 

To illustrate, consider the configuration of other voters preferences (N-1,0,0), i.e, all 

other voters have preference ordering (A,B,C), which occurs with probability 

P(N−1,0,0)=(1/3)
N−1

. For simplicity, consider only quasi-symmetric strategies.
1
 One of the 

pivotal situations faced by a voter with preference (A,B,C) is a tie between A and B. This 

occurs with probability: 

 
     

1

2
( 1 2 )

( , , ) ( , , ) ( , , )

|( 1,0,0)

1

3

( 1)!

! ! 1 2 !

 
 
   

 

 
 
 




 


N

i i N i
A B C A B C A B C

A B N A B C

N
i

N
P p p p

i i N i
 (B4) 

where PA=B|(N-1,0,0) denotes the probability that a tie occurs between A and B conditional on 

the distribution of others’ preferences being (N−1,0,0), and x (x) indicates the rounding up 

(down) of x. Note that the sum is restrained to consider only situations where C receives 

fewer votes than A and B or a three-way tie, i.e., a vote for A is decisive in favor of A while a 

vote for B is decisive in favor of B. 

One can derive pivotal probabilities as in (B4) for all configurations of voter 

preferences and strategies and substitute them for P−i in (B2) (whilst neglecting all P−i for 

non-pivotal situations). Note that as N increases each pivotal probability as in (B4) converges 

to 0. As a consequence, the difference in expected utility in (B2) converges to 0 and the 

probability of voting for any specific option in (B1) converges to 1/3.  

 

                                                         
1
 Quasi-symmetric strategies are strategies that are equal for all players with the same 

preferences and information and facing the same environment.  



Appendix C - Principal branch of the MLC

In this appendix we present graphs of the Principal Branch of the Multinomial Logit Correspon-

dence (MLC) forN = 12 andµ ∈ [0, 10]. We present all the 31 unique distributions regarding

quasi-symmetric strategies1. In some cases, the principal branch contains “backward bending”

portions, i.e., the branch does not always moves monotonically w.r.t. to µ. This leads to mul-

tiple equilibria. In order to select one of the equilibria inthese cases2 we applied a “first-pass

criteria”.3 In the “first-pass” criteria we select the first equilibrium computed on any givenµ

when tracing the correspondence fromµ = ∞ towardµ = 0. The intuitive reasoning is that if

any learning process applies, it is more reasonable to assume that it moves from more to less

noisy behavior then the other way around.

The graphs also show average behavior per experimental electorate, plotted overµ = 0.55,

the value used for deriving predictions.

Figure C.1: Principal Branch of the MLC
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1Consider the distributions:(5, 4, 3) and(3, 4, 5). In both cases, the players from the group with5 voters have
as second most preferred option the most preferred option ofplayers from the group with4 voters. Similarly these
voters have as their second most preferred option the most preferred option of players from the group with3 voters,
who, in turn, have as their second most preferred option the most preferred option of the players from the group
with 5 voters. Therefore, both distribution have identical MLC when comparing groups by size.

2Selection of one equilibrium per distribution is necessaryfor weighted average computations.
3Full graphs are available upon request.
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Figure C.1: Principal Branch of the MLC (cont.)
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Figure C.1: Principal Branch of the MLC (cont.)
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Figure C.1: Principal Branch of the MLC (cont.)
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Figure C.1: Principal Branch of the MLC (cont.)
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Figure C.1: Principal Branch of the MLC (cont.)
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Appendix D - Limiting MLE

This appendix presents the limiting MLE (µ = 10−6) for each unique situation for the informed

setting (cf. fn 1 of appendix C).

Table C.1: Limiting MLC,N = 12

Sincere Strategic Third Option

Group 1 Group 2 Group 3 u
m = 3 u

m = 8 u
m = 3 u

m = 8 u
m = 3 u

m = 8

4 4 4 1 0.8767 0 0.1233 0 0
5 3 4 0.671 0.8295 0.3158 0.1705 0.0132 0
5 4 3 0.5865 0.7289 0.3994 0.2711 0.0141 0
5 5 2 0.7572 0.6293 0.2316 0.3707 0.0111 0
6 1 5 0.9167 0.9167 0.0833 0.0833 0 0
6 2 4 0.8333 0.8333 0.1667 0.1667 0 0
6 3 3 0.75 0.75 0.25 0.25 0 0
6 4 2 0.6667 0.6667 0.3333 0.3333 0 0
6 5 1 0.5833 0.5833 0.4167 0.4167 0 0
6 6 0 1 1 0 0 0 0
7 0 5 0.7222 0.7222 0.1389 0.1389 0.1389 0.1389
7 1 4 0.7222 0.7222 0.1389 0.1389 0.1389 0.1389
7 2 3 0.7222 0.7222 0.1389 0.1389 0.1389 0.1389
7 3 2 0.7222 0.7222 0.1389 0.1389 0.1389 0.1389
7 4 1 0.7222 0.7222 0.1389 0.1389 0.1389 0.1389
7 5 0 0.7222 0.7222 0.1389 0.1389 0.1389 0.1389
8 0 4 0.778 0.6708 0.1111 0.3098 0.1109 0
8 1 3 0.778 0.8058 0.1111 0.1724 0.1109 0.0218
8 2 2 0.778 0.7807 0.111 0.1351 0.1109 0.0506
8 3 1 0.7781 0.801 0.111 0.1241 0.1109 0.075
8 4 0 0.7781 0.781 0.111 0.1097 0.1109 0.1093
9 0 3 0.8348 0.7907 0.0836 0.2087 0.0816 0.0007
9 1 2 0.8353 0.8266 0.0832 0.1537 0.0815 0.0197
9 2 1 0.8357 0.8555 0.0829 0.1019 0.0814 0.0426
9 3 0 0.8359 0.8497 0.0827 0.0778 0.0813 0.0725
10 0 2 0.8861 0.8349 0.0587 0.1602 0.0551 0.0049
10 1 1 0.8871 0.8922 0.0579 0.087 0.055 0.0208
10 2 0 0.8877 0.9031 0.0574 0.053 0.0549 0.044
11 0 1 0.9293 0.9127 0.037 0.0788 0.0338 0.0085
11 1 0 0.9305 0.939 0.0359 0.0348 0.0337 0.0262
12 0 0 0.9651 0.9605 0.0179 0.023 0.017 0.0165

Notes.This table shows for each possible unique realization of thepreference distribution

the average probability of voting sincerely, strategically or for the third option, conditional

on the value of the intermediate option. These values are computed using a tracing proce-

dure (Turocy 2005,2010) and reporting the outcome whenµ = 10−6.

13



14 
 

Appendix E - MLC for large electorates 
 

Here, we describe the MLC for larger N (N=99 and N=999,999). Figure E1 shows the cases 

for uninformed voters. 

 

Figure E1: Multinomial Logit Correspondences for Uninformed Voters 

           A             

 

           B           C 

 

Notes. Lines show the principal branch of the MLC for high (u
m
=8) and low (u

m
=3) values of the intermediate 

option. In panels A and B, the size of the voting body (N) is 99, and 999,999, respectively. Panel C zooms in on 

the large electorate case for [0,1]. 

 

 

For legislature-size voting bodies (panel A) similar results are obtained as in the N=12 case 

reported in the main text, though the MLE probability of choosing the dominated alternative 

increases to approximately 0.2 for =1. The probability of voting strategically again depends 

strongly on the intermediate utility. For (0.4,0.8) it is more or less stable around 0.36 when 
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u
m
=8 and increases from +0.19 to 0.28 for u

m
=3. Hence, MLE predicts substantial strategic 

voting, even in legislature-size groups. 

Finally, panels B and C of figure E1 show the MLCs in large electorates (approximately 1 

million voters). Here, the probability of being pivotal is so small that the noise term 

dominates voters’ decisions. Even for low -values the probability of voting for any of the 

options is close to 1/3. Only for <0.1 can we distinguish between probabilities for the 

distinct options. Of course, one could easily adapt the model and arrive at non-random 

equilibrium probabilities of sincere voting.
1
 Here we conclude that in large electorates 

significant effects of our model parameters on the probability of strategic voting are only 

observed for very low levels of noise.  

 

Figure E2 shows the MLC for informed voters in the case where (NABC,NBCA,NCAB) = 

(33,33,33). 

Figure E2: Multinomial Logit Correspondences for Informed Voters    

 

Notes. Lines show the principle branch of the MLC for high (u
m
=8) and low (u

m
=3) values of the intermediate 

option when (NABC,NBCA,NCAB) = (33,33,33). 
 

As with the small voting body (N=12) reported in the main text, the results for these medium 

sized legislatures (N=99) are very comparable to the uninformed case. In the informed case, 

for [0.4,0.8] the MLE probability of a strategic vote is approximately 0.38 when u
m
=8 and 

increases from close to 0 to 0.26 for u
m
=3. 

  

                                                         
1
 For example, error need not be equally likely for all options. Intuitively, it would seem that the utility from the 

dominated alternative winning is much less prone to noise than the utility of having the most favored option win. 

Similarly, there is no reason why noise in small voting bodies would have the same distribution as in large 

electorates or why would be equal across voters. Adapting the model in these ways could lead to other results 

than those presented here.  
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Appendix F - MLC per voter type 

This appendix presents and discusses the MLC per voter type. To start, Figure F1 plots the 

weighted average of the Principal Branch of the MLC for these four sets.
2
 

Figure F1: Strategic Voting by Voter Types 

A                                                                       B 

 
Notes. Lines show the weighted average of the principal branches of the MLCs, distinguishing between high 

(u
m
=8) and low (u

m
=3) values of the intermediate option in combination with a voter’s Incentive-Type. Rank 2

nd
 

voters are shown in panel A and Rank 3
rd

 voters in panel B. Only the equilibrium probabilities of voting 

strategically are shown. The average is across all possible combinations of preference orderings, weighted by the 

probabilities with which they occur. Cases where groups are tied for Rank 2
nd

 are not included in the graph (cf. 

fn 24). 

 

First note that different types play distinct strategies. In the Nash equilibrium (as 0) 

Opposers tend to vote strategically. When ranked 3
rd

 with a low intermediate value, the Nash 

equilibrium probability is highest (almost 0.85). Irrespective of rank and intermediate value, 

Opposers vote more strategically than Compromisers in this limiting MLE.
3
 With noise, in 

particular when [0.4,0.8], Rank 3
rd

 voters vote mostly strategically in the MLE.
4
   The In-

centive-Type matters, however. When u
m
=3, Rank 3

rd
 voters are more likely to vote strategi-

cally if they are Opposers than if they are Compromisers. The reverse holds for u
m
=8.  

 

The latter result is in line with intuition. When they are Compromisers, Rank 3
rd

 voters 

second choice is the Majoritarian Candidate. A strategic vote is likely to be successful 

because supporters of this candidate rarely vote strategically. For the high importance of the 

intermediate option, the benefits of a strategic vote are relatively high. When they are 

                                                         
2
 Separate graphs for each unique situation are available upon request. 

3
 Not shown in the figure is that in the selected Nash equilibrium, supporters have relatively low probabilities of 

voting strategically (between 0.05 and 0.17). 
4
 The exception is the group of Rank 3

rd
 Compromisers facing low intermediate value. The MLE for this group is 

approximately 0.3 for these μ-values.  
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Compromisers, Rank 3
rd

 voters are therefore likely to vote strategically. When they are 

Opposers, a strategic vote is an attempt to collaborate with the Rank 2
nd

 voters, who 

themselves are Compromisers. The attraction of a strategic vote is diminished by the fact that 

the voters it supports are themselves inclined to vote strategically for the Majoritarian 

Candidate, decreasing the probability of success. 

 

With a low intermediate value, the interpretation is more complex. First, note that in this 

case Rank 3
rd

 voters vote less strategically anyway. When Rank 2
nd

 voters are Compromisers, 

the appeal for a strategic vote is lower than with high intermediate value. Therefore, in 

equilibrium, they settle less for a compromise, creating a chance for the Rank 3
rd

 voters (Op-

posers) to vote strategically by supporting the option most preferred by the Rank 2
nd

 voters. 

When Rank 3
rd

 voters are Compromisers, Rank 2
nd

 voters are Opposers. A strategic vote by 

the latter means voting for the option most preferred by Rank 3
rd

. The incentive for Rank 3
rd

 

voters to compromise is them low, especially when together with Rank 2
nd

 voters they have a 

strong majority. This reasoning implies an increased probability of a strategic vote by Rank 

2
nd

 voters (Opposers) and a decreased probability for Rank 3
rd

 voters (Compromisers). 

 

We use this analysis to derive behavioral prediction 4: 

 With full information Rank 3rd voters vote more strategically (on average) than other 

Rank-Types (figure F1) 

 

Moreover, we derived the following combined Rank-Type and Incentive-Type behavioral 

predictions: 

 With full information and low value for the intermediate option Rank 3rd voters will more 

likely vote strategically if they are Opposers than if they are Compromisers (figure F1 B).  

 With full information and low value for the intermediate option Rank 2nd voters will 

more likely vote strategically if they are Opposers than if they are Compromisers (figure 

F1 A). 

 

Combined, they lead to behavioral prediction 5: 

 With full information and low value for the intermediate option, Opposers are more likely 

to vote strategically than Compromisers.  
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Similarly, we derive the behavioral predictions:   

 With full information and high value for the intermediate option Rank 3rd voters will 

more likely vote strategically if they are Compromisers than if they are Opposers (figure 

F1 B). 

 With full information and high value for the intermediate option Rank 2nd voters more 

likely vote strategically if they are Compromisers than if they are Opposers (figure F1 A).  

 

Combined, they lead to behavioral prediction 6: 

 With full information and high value for the intermediate option, Compromisers are more 

likely to vote strategically than Opposers. 
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Appendix G - Experimental instructions 

In this appendix we provide a transcript of the instructions for the treatment with high 

intermediate value and full information. The paragraph denoted in italics was omitted in 

the treatment without information. Note that there were 24 subjects (i.e., two 

independent electorates) in the laboratory in any given session. 

 

Welcome 

 

Welcome to this experiment in decision making. Please read these instructions carefully. 

They will explain the situations you will be facing and the decisions you will be asked to 

make. 

 

In this experiment you will earn money, which will be paid to you privately at the end of 

the session. Your earnings will depend on your decisions as well as on the decisions of 

other participants in today’s experiment. 

 

Your earnings in the experiment will be in experimental “points”. At the end of the 

experiment, each experimental point will be exchanged for euros at a rate of €0.05 per 

point. For example, if you earn 200 points, your earnings will be € 10. In addition, you 

have already received € 7 for showing up on time. 

 

Rounds and Decisions 

 

In this experiment, you will play various rounds. The total number of rounds will not be 

revealed, however. In each round, you will be asked to make exactly one decision.  
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Your decision in any round consists in voting for one of the options: A, B or C. The 

electorate consists of 12 people whose identities will not be revealed. This electorate 

will be kept fixed during the whole experiment. Each member of the electorate will have 

the same three options to vote from. 

 

The option elected will be the one receiving the highest number of votes (out of 12). In 

case of a tie, one of the options with the highest number of votes will be randomly 

selected with equal chance. 

 

Your Preference Ordering 

 

In each round you will be assigned a preference ordering which will determine your 

earnings according to the winner of the vote. 

 

Your preference ordering, and the preference ordering of your colleagues, can be one of 

the following: 

 

A B C 

B C A 

C A B 

 

In case the elected option is the option listed first you will receive 10 points;  

In case the elected option is the option listed second you will receive 8 points; 

In case the elected option is the option listed last you will receive 1 point. 
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In each round, each of the 3 preference orderings will be attributed to each person 

independently with equal chance. Therefore, your preference ordering will often change 

from one round to another. Before you cast your vote, you will be informed of your 

preference ordering for that round. We advise that at the start of every round you take a 

moment to check this preference ordering.  

 

In addition, at the start of every round, you will be informed how many participants in your 

electorate have been attributed to each of the three preference orderings. For example, you 

may hear that 5 voters have preference ordering A B C, 3 voters have B C A and 4 voters 

have C A B. In addition, you will also know your own preference ordering for the round, of 

course.  

Trial Round 

 

Before we start with the actual experiment, there will be one trial round at the start of 

the experiment. This trial round proceeds in exactly the same way as the rounds in the 

experiment itself, but it will have no consequences for actual earnings. 
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Appendix H - Preference distributions used 

Table H1 shows the realizations of the random draws for the preference distributions 

for the 40 elections. The same realizations were used in all electorates. 

Table H1: Realized Preference Distributions 

Election ABC BCA CAB 
Majoritarian 

Set 
Majoritarian 

Candidate 

1 4 5 3 B B 
2 1 4 7 C C 
3 3 5 4 B B 
4 3 4 5 C C 
5 2 6 4 B B 

6 7 2 3 A A 

7 6 3 3 A A 

8 4 5 3 B B 

9 3 6 3 B B 

10 1 7 4 B B 

11 5 1 6 C C 

12 6 4 2 A A 

13 4 3 5 C C 

14 3 3 6 C C 

15 2 9 1 B B 

16 4 2 6 C C 

17 7 3 2 A A 

18 2 4 6 C C 

19 4 1 7 C C 

20 3 1 8 C C 

21 4 4 4 ABC ABC 
22 5 5 2 AB A 
23 2 5 5 BC B 
24 4 4 4 ABC ABC 
25 3 4 5 C C 

26 4 5 3 B B 

27 4 3 5 C C 

28 2 6 4 B B 

29 5 4 3 A A 

30 4 3 5 C C 

31 2 4 6 C C 

32 8 1 3 A A 

33 2 7 3 B B 

34 2 6 4 B B 

35 3 5 4 B B 

36 5 5 2 AB A 
37 10 2 0 A A 
38 5 1 6 C C 
39 2 2 8 C C 
40 5 5 2 AB A 

 
 


